Redox-mediated carbon monoxide release from a manganese carbonyl—implications for physiological CO delivery by CO releasing moieties
The dynamics of hydrogen peroxide reactions with metal carbonyls have received little attention. Given reports that therapeutic levels of carbon monoxide are released in hypoxic tumour cells upon manganese carbonyls reactions with endogenous H2O2, it is critical to assess the underlying CO release m...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
The Royal Society
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/20bbbbaa1aad4ed79fd1ab8821fc0649 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:20bbbbaa1aad4ed79fd1ab8821fc0649 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:20bbbbaa1aad4ed79fd1ab8821fc06492021-11-23T06:17:50ZRedox-mediated carbon monoxide release from a manganese carbonyl—implications for physiological CO delivery by CO releasing moieties10.1098/rsos.2110222054-5703https://doaj.org/article/20bbbbaa1aad4ed79fd1ab8821fc06492021-11-01T00:00:00Zhttps://royalsocietypublishing.org/doi/10.1098/rsos.211022https://doaj.org/toc/2054-5703The dynamics of hydrogen peroxide reactions with metal carbonyls have received little attention. Given reports that therapeutic levels of carbon monoxide are released in hypoxic tumour cells upon manganese carbonyls reactions with endogenous H2O2, it is critical to assess the underlying CO release mechanism(s). In this context, a quantitative mechanistic investigation of the H2O2 oxidation of the water-soluble model complex fac-[Mn(CO)3(Br)(bpCO2)]2–, (A, bpCO22– = 2,2′-bipyridine-4,4′-dicarboxylate dianion) was undertaken under physiologically relevant conditions. Characterizing such pathways is essential to evaluating the viability of redox-mediated CO release as an anti-cancer strategy. The present experimental studies demonstrate that approximately 2.5 equivalents of CO are released upon H2O2 oxidation of A via pH-dependent kinetics that are first-order both in [A] and in [H2O2]. Density functional calculations were used to evaluate the key intermediates in the proposed reaction mechanisms. These pathways are discussed in terms of their relevance to physiological CO delivery by carbon monoxide releasing moieties.Jacob A. BarrettZhi LiJohn V. GarciaEmily WeinDongyun ZhengCamden HuntLoc NgoLior SepunaruAlexei V. IretskiiPeter C. FordThe Royal Societyarticlehydrogen peroxidemanganese carbonylCO releasing moietyredox reactionScienceQENRoyal Society Open Science, Vol 8, Iss 11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
hydrogen peroxide manganese carbonyl CO releasing moiety redox reaction Science Q |
spellingShingle |
hydrogen peroxide manganese carbonyl CO releasing moiety redox reaction Science Q Jacob A. Barrett Zhi Li John V. Garcia Emily Wein Dongyun Zheng Camden Hunt Loc Ngo Lior Sepunaru Alexei V. Iretskii Peter C. Ford Redox-mediated carbon monoxide release from a manganese carbonyl—implications for physiological CO delivery by CO releasing moieties |
description |
The dynamics of hydrogen peroxide reactions with metal carbonyls have received little attention. Given reports that therapeutic levels of carbon monoxide are released in hypoxic tumour cells upon manganese carbonyls reactions with endogenous H2O2, it is critical to assess the underlying CO release mechanism(s). In this context, a quantitative mechanistic investigation of the H2O2 oxidation of the water-soluble model complex fac-[Mn(CO)3(Br)(bpCO2)]2–, (A, bpCO22– = 2,2′-bipyridine-4,4′-dicarboxylate dianion) was undertaken under physiologically relevant conditions. Characterizing such pathways is essential to evaluating the viability of redox-mediated CO release as an anti-cancer strategy. The present experimental studies demonstrate that approximately 2.5 equivalents of CO are released upon H2O2 oxidation of A via pH-dependent kinetics that are first-order both in [A] and in [H2O2]. Density functional calculations were used to evaluate the key intermediates in the proposed reaction mechanisms. These pathways are discussed in terms of their relevance to physiological CO delivery by carbon monoxide releasing moieties. |
format |
article |
author |
Jacob A. Barrett Zhi Li John V. Garcia Emily Wein Dongyun Zheng Camden Hunt Loc Ngo Lior Sepunaru Alexei V. Iretskii Peter C. Ford |
author_facet |
Jacob A. Barrett Zhi Li John V. Garcia Emily Wein Dongyun Zheng Camden Hunt Loc Ngo Lior Sepunaru Alexei V. Iretskii Peter C. Ford |
author_sort |
Jacob A. Barrett |
title |
Redox-mediated carbon monoxide release from a manganese carbonyl—implications for physiological CO delivery by CO releasing moieties |
title_short |
Redox-mediated carbon monoxide release from a manganese carbonyl—implications for physiological CO delivery by CO releasing moieties |
title_full |
Redox-mediated carbon monoxide release from a manganese carbonyl—implications for physiological CO delivery by CO releasing moieties |
title_fullStr |
Redox-mediated carbon monoxide release from a manganese carbonyl—implications for physiological CO delivery by CO releasing moieties |
title_full_unstemmed |
Redox-mediated carbon monoxide release from a manganese carbonyl—implications for physiological CO delivery by CO releasing moieties |
title_sort |
redox-mediated carbon monoxide release from a manganese carbonyl—implications for physiological co delivery by co releasing moieties |
publisher |
The Royal Society |
publishDate |
2021 |
url |
https://doaj.org/article/20bbbbaa1aad4ed79fd1ab8821fc0649 |
work_keys_str_mv |
AT jacobabarrett redoxmediatedcarbonmonoxidereleasefromamanganesecarbonylimplicationsforphysiologicalcodeliverybycoreleasingmoieties AT zhili redoxmediatedcarbonmonoxidereleasefromamanganesecarbonylimplicationsforphysiologicalcodeliverybycoreleasingmoieties AT johnvgarcia redoxmediatedcarbonmonoxidereleasefromamanganesecarbonylimplicationsforphysiologicalcodeliverybycoreleasingmoieties AT emilywein redoxmediatedcarbonmonoxidereleasefromamanganesecarbonylimplicationsforphysiologicalcodeliverybycoreleasingmoieties AT dongyunzheng redoxmediatedcarbonmonoxidereleasefromamanganesecarbonylimplicationsforphysiologicalcodeliverybycoreleasingmoieties AT camdenhunt redoxmediatedcarbonmonoxidereleasefromamanganesecarbonylimplicationsforphysiologicalcodeliverybycoreleasingmoieties AT locngo redoxmediatedcarbonmonoxidereleasefromamanganesecarbonylimplicationsforphysiologicalcodeliverybycoreleasingmoieties AT liorsepunaru redoxmediatedcarbonmonoxidereleasefromamanganesecarbonylimplicationsforphysiologicalcodeliverybycoreleasingmoieties AT alexeiviretskii redoxmediatedcarbonmonoxidereleasefromamanganesecarbonylimplicationsforphysiologicalcodeliverybycoreleasingmoieties AT petercford redoxmediatedcarbonmonoxidereleasefromamanganesecarbonylimplicationsforphysiologicalcodeliverybycoreleasingmoieties |
_version_ |
1718416870250381312 |