Quantifying the effects of spirulina supplementation on plasma lipid and glucose concentrations, body weight, and blood pressure
Haohai Huang,1 Dan Liao,2 Rong Pu,3 Yejia Cui3 1Department of Clinical Pharmacy, Dongguan Third People’s Hospital, Affiliated Dongguan Shilong People’s Hospital of Southern Medical University, Dongguan, Guangdong, China; 2Department of Gynaecology, Dongguan Third People&rsquo...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/20bc2b07b8ed446c9a5e813c673fb153 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Haohai Huang,1 Dan Liao,2 Rong Pu,3 Yejia Cui3 1Department of Clinical Pharmacy, Dongguan Third People’s Hospital, Affiliated Dongguan Shilong People’s Hospital of Southern Medical University, Dongguan, Guangdong, China; 2Department of Gynaecology, Dongguan Third People’s Hospital, Affiliated Dongguan Shilong People’s Hospital of Southern Medical University, Dongguan, Guangdong, China; 3Department of Clinical Laboratory, Dongguan Third People’s Hospital, Affiliated Dongguan Shilong People’s Hospital of Southern Medical University, Dongguan, Guangdong, China Purpose: Spirulina is generally used as a nutraceutical food supplement due to its nutrient profile, lack of toxicity, and therapeutic effects. Clinical trials have investigated the influence of spirulina on metabolic-related risk factors but have yielded conflicting results in humans. Here, we summarize the evidence of the effects of spirulina on serum lipid profile, glucose management, BP, and body weight by conducting a meta-analysis.Materials and methods: Relevant studies were retrieved by systematic search of MEDLINE, EMBASE, Scopus databases, and reference lists of relevant original studies from inception to July 2018. Data were extracted following a standardized protocol. Two investigators independently extracted study characteristics, outcomes measures, and appraised methodological quality. Effect sizes were performed using a random-effects model, with weighted mean differences (WMDs) and 95% CIs between the means for the spirulina intervention and control arms. Subgroup analyses were conducted to explore the possible influences of study characteristics. Publication bias and sensitivity analysis were also performed.Results: A total of 1,868 records were identified of which 12 trials with 14 arms were eligible. The amount of spirulina ranged from 1 to 19 g/d, and intervention durations ranged from 2 to 48 weeks. Overall, data synthesis showed that spirulina supplements significantly lowered total cholesterol (WMD = –36.60 mg/dL; 95% CI: −51.87 to –21.33; P=0.0001), low-density lipoprotein cholesterol (WMD = –33.16 mg/dL; 95% CI: −50.52 to –15.75; P=0.0002), triglycerides (WMD = –39.20 mg/dL; 95% CI: −52.71 to –25.69; P=0.0001), very-low-density lipoprotein cholesterol (WMD = –8.02 mg/dL; 95% CI: −8.77 to –7.26; P=0.0001), fasting blood glucose (WMD = –5.01 mg/dL; 95% CI: −9.78 to –0.24; P=0.04), and DBP (WMD = –7.17 mmHg; 95% CI: −8.57 to –5.78; P=0.001). These findings remained stable in the sensitivity analysis, and no obvious publication bias was detected.Conclusion: Our findings provide substantial evidence that spirulina supplementation has favorable effect on select cardiovascular and metabolic biomarkers in humans, including lipid, glucose, and DBP management. Keywords: blood pressure, body weight, blood glucose, CVD, lipid, spirulina |
---|