A Modified Nonsmooth Levenberg–Marquardt Algorithm for the General Mixed Complementarity Problem
As is well known, the mixed complementarity problem is equivalent to a nonsmooth equation by using a median function. By investigating the generalized Jacobi of a composite vector-valued maximum function, a nonsmooth Levenberg–Marquardt algorithm is proposed in this paper. In the present algorithm,...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/20c462cdfe074fccacaca52159a3cdb8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | As is well known, the mixed complementarity problem is equivalent to a nonsmooth equation by using a median function. By investigating the generalized Jacobi of a composite vector-valued maximum function, a nonsmooth Levenberg–Marquardt algorithm is proposed in this paper. In the present algorithm, we adopt a new LM parameter form and discuss the local convergence rate under the local error bound condition, which is weaker than nonsingularity. Finally, the numerical experiments and the application for the real-time pricing in smart grid illustrate the effectiveness of the algorithm. |
---|