The near-symmetry of protein oligomers: NMR-derived structures
Abstract The majority of oligomeric proteins form clusters which have rotational or dihedral symmetry. Despite the many advantages of symmetric packing, protein oligomers are only nearly symmetric, and the origin of this phenomenon is still in need to be fully explored. Here we apply near-symmetry a...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/20ec46fe47f54c7abe9e85ff57cbcd7b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:20ec46fe47f54c7abe9e85ff57cbcd7b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:20ec46fe47f54c7abe9e85ff57cbcd7b2021-12-02T14:58:38ZThe near-symmetry of protein oligomers: NMR-derived structures10.1038/s41598-020-65097-82045-2322https://doaj.org/article/20ec46fe47f54c7abe9e85ff57cbcd7b2020-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-65097-8https://doaj.org/toc/2045-2322Abstract The majority of oligomeric proteins form clusters which have rotational or dihedral symmetry. Despite the many advantages of symmetric packing, protein oligomers are only nearly symmetric, and the origin of this phenomenon is still in need to be fully explored. Here we apply near-symmetry analyses by the Continuous Symmetry Measures methodology of protein homomers to their natural state, namely their structures in solution. NMR-derived structural data serves us for that purpose. We find that symmetry deviations of proteins are by far higher in solution, compared to the crystalline state; that much of the symmetry distortion is due to amino acids along the interface between the subunits; that the distortions are mainly due to hydrophilic amino acids; and that distortive oligomerization processes such as the swap-domain mechanism can be identified by the symmetry analysis. Most of the analyses were carried out on distorted C 2 -symmetry dimers, but C 3 and D 2 cases were analyzed as well. Our NMR analysis supports the idea that the crystallographic B-factor represents non-classical crystals, in which different conformers pack in the crystal, perhaps from the conformers which the NMR analysis provides.Maayan BonjackDavid AvnirNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 10, Iss 1, Pp 1-14 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Maayan Bonjack David Avnir The near-symmetry of protein oligomers: NMR-derived structures |
description |
Abstract The majority of oligomeric proteins form clusters which have rotational or dihedral symmetry. Despite the many advantages of symmetric packing, protein oligomers are only nearly symmetric, and the origin of this phenomenon is still in need to be fully explored. Here we apply near-symmetry analyses by the Continuous Symmetry Measures methodology of protein homomers to their natural state, namely their structures in solution. NMR-derived structural data serves us for that purpose. We find that symmetry deviations of proteins are by far higher in solution, compared to the crystalline state; that much of the symmetry distortion is due to amino acids along the interface between the subunits; that the distortions are mainly due to hydrophilic amino acids; and that distortive oligomerization processes such as the swap-domain mechanism can be identified by the symmetry analysis. Most of the analyses were carried out on distorted C 2 -symmetry dimers, but C 3 and D 2 cases were analyzed as well. Our NMR analysis supports the idea that the crystallographic B-factor represents non-classical crystals, in which different conformers pack in the crystal, perhaps from the conformers which the NMR analysis provides. |
format |
article |
author |
Maayan Bonjack David Avnir |
author_facet |
Maayan Bonjack David Avnir |
author_sort |
Maayan Bonjack |
title |
The near-symmetry of protein oligomers: NMR-derived structures |
title_short |
The near-symmetry of protein oligomers: NMR-derived structures |
title_full |
The near-symmetry of protein oligomers: NMR-derived structures |
title_fullStr |
The near-symmetry of protein oligomers: NMR-derived structures |
title_full_unstemmed |
The near-symmetry of protein oligomers: NMR-derived structures |
title_sort |
near-symmetry of protein oligomers: nmr-derived structures |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/20ec46fe47f54c7abe9e85ff57cbcd7b |
work_keys_str_mv |
AT maayanbonjack thenearsymmetryofproteinoligomersnmrderivedstructures AT davidavnir thenearsymmetryofproteinoligomersnmrderivedstructures AT maayanbonjack nearsymmetryofproteinoligomersnmrderivedstructures AT davidavnir nearsymmetryofproteinoligomersnmrderivedstructures |
_version_ |
1718389251504078848 |