New class of operators where the distance between the identity operator and the generalized Jordan ∗-derivation range is maximal
A new class of operators, larger than ∗\ast -finite operators, named generalized ∗\ast -finite operators and noted by Gℱ∗(ℋ){{\mathcal{G {\mathcal F} }}}^{\ast }\left({\mathcal{ {\mathcal H} }}) is introduced, where: Gℱ∗(ℋ)={(A,B)∈ℬ(ℋ)×ℬ(ℋ):∥TA−BT∗−λI∥≥∣λ∣,∀λ∈C,∀T∈ℬ(ℋ)}.{{\mathcal{G {\mathcal F} }}}...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/20f9be0886aa4fbcbf6da4add912de44 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:20f9be0886aa4fbcbf6da4add912de44 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:20f9be0886aa4fbcbf6da4add912de442021-12-05T14:10:45ZNew class of operators where the distance between the identity operator and the generalized Jordan ∗-derivation range is maximal2391-466110.1515/dema-2021-0032https://doaj.org/article/20f9be0886aa4fbcbf6da4add912de442021-08-01T00:00:00Zhttps://doi.org/10.1515/dema-2021-0032https://doaj.org/toc/2391-4661A new class of operators, larger than ∗\ast -finite operators, named generalized ∗\ast -finite operators and noted by Gℱ∗(ℋ){{\mathcal{G {\mathcal F} }}}^{\ast }\left({\mathcal{ {\mathcal H} }}) is introduced, where: Gℱ∗(ℋ)={(A,B)∈ℬ(ℋ)×ℬ(ℋ):∥TA−BT∗−λI∥≥∣λ∣,∀λ∈C,∀T∈ℬ(ℋ)}.{{\mathcal{G {\mathcal F} }}}^{\ast }\left({\mathcal{ {\mathcal H} }})=\{(A,B)\in {\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }})\times {\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }}):\parallel TA-B{T}^{\ast }-\lambda I\parallel \ge | \lambda | ,\hspace{0.33em}\forall \lambda \in {\mathbb{C}},\hspace{0.33em}\forall T\in {\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }})\}. Basic properties are given. Some examples are also presented.Messaoudene HadiaMesbah NadiaDe Gruyterarticle∗-finite operatornumerical rangegeneralized jordan ∗-derivationfinite operatorparanormal operator47b4747a12MathematicsQA1-939ENDemonstratio Mathematica, Vol 54, Iss 1, Pp 311-317 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
∗-finite operator numerical range generalized jordan ∗-derivation finite operator paranormal operator 47b47 47a12 Mathematics QA1-939 |
spellingShingle |
∗-finite operator numerical range generalized jordan ∗-derivation finite operator paranormal operator 47b47 47a12 Mathematics QA1-939 Messaoudene Hadia Mesbah Nadia New class of operators where the distance between the identity operator and the generalized Jordan ∗-derivation range is maximal |
description |
A new class of operators, larger than ∗\ast -finite operators, named generalized ∗\ast -finite operators and noted by Gℱ∗(ℋ){{\mathcal{G {\mathcal F} }}}^{\ast }\left({\mathcal{ {\mathcal H} }}) is introduced, where: Gℱ∗(ℋ)={(A,B)∈ℬ(ℋ)×ℬ(ℋ):∥TA−BT∗−λI∥≥∣λ∣,∀λ∈C,∀T∈ℬ(ℋ)}.{{\mathcal{G {\mathcal F} }}}^{\ast }\left({\mathcal{ {\mathcal H} }})=\{(A,B)\in {\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }})\times {\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }}):\parallel TA-B{T}^{\ast }-\lambda I\parallel \ge | \lambda | ,\hspace{0.33em}\forall \lambda \in {\mathbb{C}},\hspace{0.33em}\forall T\in {\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }})\}. Basic properties are given. Some examples are also presented. |
format |
article |
author |
Messaoudene Hadia Mesbah Nadia |
author_facet |
Messaoudene Hadia Mesbah Nadia |
author_sort |
Messaoudene Hadia |
title |
New class of operators where the distance between the identity operator and the generalized Jordan ∗-derivation range is maximal |
title_short |
New class of operators where the distance between the identity operator and the generalized Jordan ∗-derivation range is maximal |
title_full |
New class of operators where the distance between the identity operator and the generalized Jordan ∗-derivation range is maximal |
title_fullStr |
New class of operators where the distance between the identity operator and the generalized Jordan ∗-derivation range is maximal |
title_full_unstemmed |
New class of operators where the distance between the identity operator and the generalized Jordan ∗-derivation range is maximal |
title_sort |
new class of operators where the distance between the identity operator and the generalized jordan ∗-derivation range is maximal |
publisher |
De Gruyter |
publishDate |
2021 |
url |
https://doaj.org/article/20f9be0886aa4fbcbf6da4add912de44 |
work_keys_str_mv |
AT messaoudenehadia newclassofoperatorswherethedistancebetweentheidentityoperatorandthegeneralizedjordanderivationrangeismaximal AT mesbahnadia newclassofoperatorswherethedistancebetweentheidentityoperatorandthegeneralizedjordanderivationrangeismaximal |
_version_ |
1718371779949363200 |