New class of operators where the distance between the identity operator and the generalized Jordan ∗-derivation range is maximal

A new class of operators, larger than ∗\ast -finite operators, named generalized ∗\ast -finite operators and noted by Gℱ∗(ℋ){{\mathcal{G {\mathcal F} }}}^{\ast }\left({\mathcal{ {\mathcal H} }}) is introduced, where: Gℱ∗(ℋ)={(A,B)∈ℬ(ℋ)×ℬ(ℋ):∥TA−BT∗−λI∥≥∣λ∣,∀λ∈C,∀T∈ℬ(ℋ)}.{{\mathcal{G {\mathcal F} }}}...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Messaoudene Hadia, Mesbah Nadia
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/20f9be0886aa4fbcbf6da4add912de44
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:20f9be0886aa4fbcbf6da4add912de44
record_format dspace
spelling oai:doaj.org-article:20f9be0886aa4fbcbf6da4add912de442021-12-05T14:10:45ZNew class of operators where the distance between the identity operator and the generalized Jordan ∗-derivation range is maximal2391-466110.1515/dema-2021-0032https://doaj.org/article/20f9be0886aa4fbcbf6da4add912de442021-08-01T00:00:00Zhttps://doi.org/10.1515/dema-2021-0032https://doaj.org/toc/2391-4661A new class of operators, larger than ∗\ast -finite operators, named generalized ∗\ast -finite operators and noted by Gℱ∗(ℋ){{\mathcal{G {\mathcal F} }}}^{\ast }\left({\mathcal{ {\mathcal H} }}) is introduced, where: Gℱ∗(ℋ)={(A,B)∈ℬ(ℋ)×ℬ(ℋ):∥TA−BT∗−λI∥≥∣λ∣,∀λ∈C,∀T∈ℬ(ℋ)}.{{\mathcal{G {\mathcal F} }}}^{\ast }\left({\mathcal{ {\mathcal H} }})=\{(A,B)\in {\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }})\times {\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }}):\parallel TA-B{T}^{\ast }-\lambda I\parallel \ge | \lambda | ,\hspace{0.33em}\forall \lambda \in {\mathbb{C}},\hspace{0.33em}\forall T\in {\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }})\}. Basic properties are given. Some examples are also presented.Messaoudene HadiaMesbah NadiaDe Gruyterarticle∗-finite operatornumerical rangegeneralized jordan ∗-derivationfinite operatorparanormal operator47b4747a12MathematicsQA1-939ENDemonstratio Mathematica, Vol 54, Iss 1, Pp 311-317 (2021)
institution DOAJ
collection DOAJ
language EN
topic ∗-finite operator
numerical range
generalized jordan ∗-derivation
finite operator
paranormal operator
47b47
47a12
Mathematics
QA1-939
spellingShingle ∗-finite operator
numerical range
generalized jordan ∗-derivation
finite operator
paranormal operator
47b47
47a12
Mathematics
QA1-939
Messaoudene Hadia
Mesbah Nadia
New class of operators where the distance between the identity operator and the generalized Jordan ∗-derivation range is maximal
description A new class of operators, larger than ∗\ast -finite operators, named generalized ∗\ast -finite operators and noted by Gℱ∗(ℋ){{\mathcal{G {\mathcal F} }}}^{\ast }\left({\mathcal{ {\mathcal H} }}) is introduced, where: Gℱ∗(ℋ)={(A,B)∈ℬ(ℋ)×ℬ(ℋ):∥TA−BT∗−λI∥≥∣λ∣,∀λ∈C,∀T∈ℬ(ℋ)}.{{\mathcal{G {\mathcal F} }}}^{\ast }\left({\mathcal{ {\mathcal H} }})=\{(A,B)\in {\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }})\times {\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }}):\parallel TA-B{T}^{\ast }-\lambda I\parallel \ge | \lambda | ,\hspace{0.33em}\forall \lambda \in {\mathbb{C}},\hspace{0.33em}\forall T\in {\mathcal{ {\mathcal B} }}\left({\mathcal{ {\mathcal H} }})\}. Basic properties are given. Some examples are also presented.
format article
author Messaoudene Hadia
Mesbah Nadia
author_facet Messaoudene Hadia
Mesbah Nadia
author_sort Messaoudene Hadia
title New class of operators where the distance between the identity operator and the generalized Jordan ∗-derivation range is maximal
title_short New class of operators where the distance between the identity operator and the generalized Jordan ∗-derivation range is maximal
title_full New class of operators where the distance between the identity operator and the generalized Jordan ∗-derivation range is maximal
title_fullStr New class of operators where the distance between the identity operator and the generalized Jordan ∗-derivation range is maximal
title_full_unstemmed New class of operators where the distance between the identity operator and the generalized Jordan ∗-derivation range is maximal
title_sort new class of operators where the distance between the identity operator and the generalized jordan ∗-derivation range is maximal
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/20f9be0886aa4fbcbf6da4add912de44
work_keys_str_mv AT messaoudenehadia newclassofoperatorswherethedistancebetweentheidentityoperatorandthegeneralizedjordanderivationrangeismaximal
AT mesbahnadia newclassofoperatorswherethedistancebetweentheidentityoperatorandthegeneralizedjordanderivationrangeismaximal
_version_ 1718371779949363200