New class of operators where the distance between the identity operator and the generalized Jordan ∗-derivation range is maximal
A new class of operators, larger than ∗\ast -finite operators, named generalized ∗\ast -finite operators and noted by Gℱ∗(ℋ){{\mathcal{G {\mathcal F} }}}^{\ast }\left({\mathcal{ {\mathcal H} }}) is introduced, where: Gℱ∗(ℋ)={(A,B)∈ℬ(ℋ)×ℬ(ℋ):∥TA−BT∗−λI∥≥∣λ∣,∀λ∈C,∀T∈ℬ(ℋ)}.{{\mathcal{G {\mathcal F} }}}...
Guardado en:
Autores principales: | Messaoudene Hadia, Mesbah Nadia |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/20f9be0886aa4fbcbf6da4add912de44 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Some results on generalized finite operators and range kernel orthogonality in Hilbert spaces
por: Mesbah Nadia, et al.
Publicado: (2021) -
Range-kernel weak orthogonality of some elementary operators
por: Bachir Ahmed, et al.
Publicado: (2021) -
Range-Kernel orthogonality and elementary operators on certain Banach spaces
por: Bachir Ahmed, et al.
Publicado: (2021) -
On (m, P)-expansive operators: products, perturbation by nilpotents, Drazin invertibility
por: Duggal B.P.
Publicado: (2021) -
Upper triangular operator matrices and limit points of the essential spectrum
por: Karmouni,M., et al.
Publicado: (2019)