Complex reaction processes in combustion unraveled by neural network-based molecular dynamics simulation
Gaining insights into combustion processes is challenging due to the complex reactions involved. The present work proposes a neural network potential model trained to ab initio data that enables to simulate the combustion of methane by predicting reactants, products and reaction intermediates.
Guardado en:
Autores principales: | Jinzhe Zeng, Liqun Cao, Mingyuan Xu, Tong Zhu, John Z. H. Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/21133458a20b4ec9a9fdc67225b9d5a7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Combustion process of nanofluids consisting of oxygen molecules and aluminum nanoparticles in a copper nanochannel using molecular dynamics simulation
por: Heng Chen, et al.
Publicado: (2021) -
Dynamical Complexity in Cognitive Neural Networks
por: GOLES,ERIC, et al.
Publicado: (2007) -
Estimation of excess air coefficient on coal combustion processes via gauss model and artificial neural network
por: Sedat Golgiyaz, et al.
Publicado: (2022) -
A Novel Combo-Algorithm Applying Java In Thermal Modelling and Simulation of Energetic Axisymmetric Materials with Combustion Reactions
por: Paul N. Nwosu
Publicado: (2021) -
Economy of combustion processes
por: Wilson, F.D.
Publicado: (2014)