Neural-like computing with populations of superparamagnetic basis functions

Population coding, where populations of artificial neurons process information collectively can facilitate robust data processing, but require high circuit overheads. Here, the authors realize this approach with reduced circuit area and power consumption, by utilizing superparamagnetic tunnel juncti...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Alice Mizrahi, Tifenn Hirtzlin, Akio Fukushima, Hitoshi Kubota, Shinji Yuasa, Julie Grollier, Damien Querlioz
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/2113d31585884fc79435832ec298745d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:2113d31585884fc79435832ec298745d
record_format dspace
spelling oai:doaj.org-article:2113d31585884fc79435832ec298745d2021-12-02T15:34:37ZNeural-like computing with populations of superparamagnetic basis functions10.1038/s41467-018-03963-w2041-1723https://doaj.org/article/2113d31585884fc79435832ec298745d2018-04-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-03963-whttps://doaj.org/toc/2041-1723Population coding, where populations of artificial neurons process information collectively can facilitate robust data processing, but require high circuit overheads. Here, the authors realize this approach with reduced circuit area and power consumption, by utilizing superparamagnetic tunnel junction based neurons.Alice MizrahiTifenn HirtzlinAkio FukushimaHitoshi KubotaShinji YuasaJulie GrollierDamien QuerliozNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-11 (2018)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Alice Mizrahi
Tifenn Hirtzlin
Akio Fukushima
Hitoshi Kubota
Shinji Yuasa
Julie Grollier
Damien Querlioz
Neural-like computing with populations of superparamagnetic basis functions
description Population coding, where populations of artificial neurons process information collectively can facilitate robust data processing, but require high circuit overheads. Here, the authors realize this approach with reduced circuit area and power consumption, by utilizing superparamagnetic tunnel junction based neurons.
format article
author Alice Mizrahi
Tifenn Hirtzlin
Akio Fukushima
Hitoshi Kubota
Shinji Yuasa
Julie Grollier
Damien Querlioz
author_facet Alice Mizrahi
Tifenn Hirtzlin
Akio Fukushima
Hitoshi Kubota
Shinji Yuasa
Julie Grollier
Damien Querlioz
author_sort Alice Mizrahi
title Neural-like computing with populations of superparamagnetic basis functions
title_short Neural-like computing with populations of superparamagnetic basis functions
title_full Neural-like computing with populations of superparamagnetic basis functions
title_fullStr Neural-like computing with populations of superparamagnetic basis functions
title_full_unstemmed Neural-like computing with populations of superparamagnetic basis functions
title_sort neural-like computing with populations of superparamagnetic basis functions
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/2113d31585884fc79435832ec298745d
work_keys_str_mv AT alicemizrahi neurallikecomputingwithpopulationsofsuperparamagneticbasisfunctions
AT tifennhirtzlin neurallikecomputingwithpopulationsofsuperparamagneticbasisfunctions
AT akiofukushima neurallikecomputingwithpopulationsofsuperparamagneticbasisfunctions
AT hitoshikubota neurallikecomputingwithpopulationsofsuperparamagneticbasisfunctions
AT shinjiyuasa neurallikecomputingwithpopulationsofsuperparamagneticbasisfunctions
AT juliegrollier neurallikecomputingwithpopulationsofsuperparamagneticbasisfunctions
AT damienquerlioz neurallikecomputingwithpopulationsofsuperparamagneticbasisfunctions
_version_ 1718386768743497728