Neural-like computing with populations of superparamagnetic basis functions
Population coding, where populations of artificial neurons process information collectively can facilitate robust data processing, but require high circuit overheads. Here, the authors realize this approach with reduced circuit area and power consumption, by utilizing superparamagnetic tunnel juncti...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2113d31585884fc79435832ec298745d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:2113d31585884fc79435832ec298745d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:2113d31585884fc79435832ec298745d2021-12-02T15:34:37ZNeural-like computing with populations of superparamagnetic basis functions10.1038/s41467-018-03963-w2041-1723https://doaj.org/article/2113d31585884fc79435832ec298745d2018-04-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-03963-whttps://doaj.org/toc/2041-1723Population coding, where populations of artificial neurons process information collectively can facilitate robust data processing, but require high circuit overheads. Here, the authors realize this approach with reduced circuit area and power consumption, by utilizing superparamagnetic tunnel junction based neurons.Alice MizrahiTifenn HirtzlinAkio FukushimaHitoshi KubotaShinji YuasaJulie GrollierDamien QuerliozNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-11 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Alice Mizrahi Tifenn Hirtzlin Akio Fukushima Hitoshi Kubota Shinji Yuasa Julie Grollier Damien Querlioz Neural-like computing with populations of superparamagnetic basis functions |
description |
Population coding, where populations of artificial neurons process information collectively can facilitate robust data processing, but require high circuit overheads. Here, the authors realize this approach with reduced circuit area and power consumption, by utilizing superparamagnetic tunnel junction based neurons. |
format |
article |
author |
Alice Mizrahi Tifenn Hirtzlin Akio Fukushima Hitoshi Kubota Shinji Yuasa Julie Grollier Damien Querlioz |
author_facet |
Alice Mizrahi Tifenn Hirtzlin Akio Fukushima Hitoshi Kubota Shinji Yuasa Julie Grollier Damien Querlioz |
author_sort |
Alice Mizrahi |
title |
Neural-like computing with populations of superparamagnetic basis functions |
title_short |
Neural-like computing with populations of superparamagnetic basis functions |
title_full |
Neural-like computing with populations of superparamagnetic basis functions |
title_fullStr |
Neural-like computing with populations of superparamagnetic basis functions |
title_full_unstemmed |
Neural-like computing with populations of superparamagnetic basis functions |
title_sort |
neural-like computing with populations of superparamagnetic basis functions |
publisher |
Nature Portfolio |
publishDate |
2018 |
url |
https://doaj.org/article/2113d31585884fc79435832ec298745d |
work_keys_str_mv |
AT alicemizrahi neurallikecomputingwithpopulationsofsuperparamagneticbasisfunctions AT tifennhirtzlin neurallikecomputingwithpopulationsofsuperparamagneticbasisfunctions AT akiofukushima neurallikecomputingwithpopulationsofsuperparamagneticbasisfunctions AT hitoshikubota neurallikecomputingwithpopulationsofsuperparamagneticbasisfunctions AT shinjiyuasa neurallikecomputingwithpopulationsofsuperparamagneticbasisfunctions AT juliegrollier neurallikecomputingwithpopulationsofsuperparamagneticbasisfunctions AT damienquerlioz neurallikecomputingwithpopulationsofsuperparamagneticbasisfunctions |
_version_ |
1718386768743497728 |