Neural-like computing with populations of superparamagnetic basis functions
Population coding, where populations of artificial neurons process information collectively can facilitate robust data processing, but require high circuit overheads. Here, the authors realize this approach with reduced circuit area and power consumption, by utilizing superparamagnetic tunnel juncti...
Guardado en:
Autores principales: | Alice Mizrahi, Tifenn Hirtzlin, Akio Fukushima, Hitoshi Kubota, Shinji Yuasa, Julie Grollier, Damien Querlioz |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2113d31585884fc79435832ec298745d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Synaptic metaplasticity in binarized neural networks
por: Axel Laborieux, et al.
Publicado: (2021) -
Control of the stochastic response of magnetization dynamics in spin-torque oscillator through radio-frequency magnetic fields
por: Sumito Tsunegi, et al.
Publicado: (2021) -
Large voltage-induced coercivity change in Pt/Co/CoO/amorphous TiO x structure and heavy metal insertion effect
por: Tomohiro Nozaki, et al.
Publicado: (2021) -
Particokinetics: computational analysis of the superparamagnetic iron oxide nanoparticles deposition process
por: Cárdenas WH, et al.
Publicado: (2012) -
Mutual synchronization of spin torque nano-oscillators through a long-range and tunable electrical coupling scheme
por: R. Lebrun, et al.
Publicado: (2017)