Brain age prediction using deep learning uncovers associated sequence variants
Machine learning algorithms can be trained to estimate age from brain structural MRI. Here, the authors introduce a new deep-learning-based age prediction approach, and then carry out a GWAS of the difference between predicted and chronological age, revealing two associated variants.
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/213453bfd3e54ce99b57019d4343efca |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Machine learning algorithms can be trained to estimate age from brain structural MRI. Here, the authors introduce a new deep-learning-based age prediction approach, and then carry out a GWAS of the difference between predicted and chronological age, revealing two associated variants. |
---|