Brain age prediction using deep learning uncovers associated sequence variants
Machine learning algorithms can be trained to estimate age from brain structural MRI. Here, the authors introduce a new deep-learning-based age prediction approach, and then carry out a GWAS of the difference between predicted and chronological age, revealing two associated variants.
Guardado en:
Autores principales: | B. A. Jonsson, G. Bjornsdottir, T. E. Thorgeirsson, L. M. Ellingsen, G. Bragi Walters, D. F. Gudbjartsson, H. Stefansson, K. Stefansson, M. O. Ulfarsson |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/213453bfd3e54ce99b57019d4343efca |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A genome-wide meta-analysis uncovers six sequence variants conferring risk of vertigo
por: Astros Th. Skuladottir, et al.
Publicado: (2021) -
A meta-analysis uncovers the first sequence variant conferring risk of Bell’s palsy
por: Astros Th. Skuladottir, et al.
Publicado: (2021) -
Sequence variant at 8q24.21 associates with sciatica caused by lumbar disc herniation
por: Gyda Bjornsdottir, et al.
Publicado: (2017) -
Sequence variant at 4q25 near PITX2 associates with appendicitis
por: Ragnar P. Kristjansson, et al.
Publicado: (2017) -
Predicting the probability of death using proteomics
por: Thjodbjorg Eiriksdottir, et al.
Publicado: (2021)