Rheological characterization of the bundling transition in F-actin solutions induced by methylcellulose.
In many in vitro experiments Brownian motion hampers quantitative data analysis. Therefore, additives are widely used to increase the solvent viscosity. For this purpose, methylcellulose (MC) has been proven highly effective as already small concentrations can significantly slow down diffusive proce...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2008
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2134b67ab9cf4532bbbbeaf32b50ee6a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:2134b67ab9cf4532bbbbeaf32b50ee6a |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:2134b67ab9cf4532bbbbeaf32b50ee6a2021-11-25T06:11:33ZRheological characterization of the bundling transition in F-actin solutions induced by methylcellulose.1932-620310.1371/journal.pone.0002736https://doaj.org/article/2134b67ab9cf4532bbbbeaf32b50ee6a2008-07-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/18629003/pdf/?tool=EBIhttps://doaj.org/toc/1932-6203In many in vitro experiments Brownian motion hampers quantitative data analysis. Therefore, additives are widely used to increase the solvent viscosity. For this purpose, methylcellulose (MC) has been proven highly effective as already small concentrations can significantly slow down diffusive processes. Beside this advantage, it has already been reported that high MC concentrations can alter the microstructure of polymer solutions such as filamentous actin. However, it remains to be shown to what extent the mechanical properties of a composite actin/MC gel depend on the MC concentration. In particular, significant alterations might occur even if the microstructure seems unaffected. Indeed, we find that the viscoelastic response of entangled F-actin solutions depends sensitively on the amount of MC added. At concentrations higher than 0.2% (w/v) MC, actin filaments are reorganized into bundles which drastically changes the viscoelastic response. At small MC concentrations the impact of MC is more subtle: the two constituents, actin and MC, contribute in an additive way to the mechanical response of the composite material. As a consequence, the effect of methylcellulose on actin solutions has to be considered very carefully when MC is used in biochemical experiments.Simone KöhlerOliver LielegAndreas R BauschPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 3, Iss 7, p e2736 (2008) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Simone Köhler Oliver Lieleg Andreas R Bausch Rheological characterization of the bundling transition in F-actin solutions induced by methylcellulose. |
description |
In many in vitro experiments Brownian motion hampers quantitative data analysis. Therefore, additives are widely used to increase the solvent viscosity. For this purpose, methylcellulose (MC) has been proven highly effective as already small concentrations can significantly slow down diffusive processes. Beside this advantage, it has already been reported that high MC concentrations can alter the microstructure of polymer solutions such as filamentous actin. However, it remains to be shown to what extent the mechanical properties of a composite actin/MC gel depend on the MC concentration. In particular, significant alterations might occur even if the microstructure seems unaffected. Indeed, we find that the viscoelastic response of entangled F-actin solutions depends sensitively on the amount of MC added. At concentrations higher than 0.2% (w/v) MC, actin filaments are reorganized into bundles which drastically changes the viscoelastic response. At small MC concentrations the impact of MC is more subtle: the two constituents, actin and MC, contribute in an additive way to the mechanical response of the composite material. As a consequence, the effect of methylcellulose on actin solutions has to be considered very carefully when MC is used in biochemical experiments. |
format |
article |
author |
Simone Köhler Oliver Lieleg Andreas R Bausch |
author_facet |
Simone Köhler Oliver Lieleg Andreas R Bausch |
author_sort |
Simone Köhler |
title |
Rheological characterization of the bundling transition in F-actin solutions induced by methylcellulose. |
title_short |
Rheological characterization of the bundling transition in F-actin solutions induced by methylcellulose. |
title_full |
Rheological characterization of the bundling transition in F-actin solutions induced by methylcellulose. |
title_fullStr |
Rheological characterization of the bundling transition in F-actin solutions induced by methylcellulose. |
title_full_unstemmed |
Rheological characterization of the bundling transition in F-actin solutions induced by methylcellulose. |
title_sort |
rheological characterization of the bundling transition in f-actin solutions induced by methylcellulose. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2008 |
url |
https://doaj.org/article/2134b67ab9cf4532bbbbeaf32b50ee6a |
work_keys_str_mv |
AT simonekohler rheologicalcharacterizationofthebundlingtransitioninfactinsolutionsinducedbymethylcellulose AT oliverlieleg rheologicalcharacterizationofthebundlingtransitioninfactinsolutionsinducedbymethylcellulose AT andreasrbausch rheologicalcharacterizationofthebundlingtransitioninfactinsolutionsinducedbymethylcellulose |
_version_ |
1718414030069039104 |