Evaluation of the factors explaining the use of agricultural land: A machine learning and model-agnostic approach
To effectively plan and manage the use of agricultural land, it is crucial to identify and evaluate the multiple human and environmental factors that influence it. In this study, we propose a model framework to identify the factors potentially explaining the use of agricultural land for wheat, maize...
Guardado en:
Autores principales: | Cláudia M. Viana, Maurício Santos, Dulce Freire, Patrícia Abrantes, Jorge Rocha |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/214ec55220a846e7910bffcad1440efe |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Feature-Based Interpretation of the Deep Neural Network
por: Eun-Hun Lee, et al.
Publicado: (2021) -
Effects of agricultural lands on the distribution pattern of genus diversity for neotropical terrestrial vertebrates
por: Chun-Jing Wang, et al.
Publicado: (2021) -
Turning the blackbox into a glassbox: An explainable machine learning approach for understanding hospitality customer
por: Ritu Sharma, et al.
Publicado: (2021) -
Random Forest Similarity Maps: A Scalable Visual Representation for Global and Local Interpretation
por: Dipankar Mazumdar, et al.
Publicado: (2021) -
Overview of Smart Aquaculture System: Focusing on Applications of Machine Learning and Computer Vision
por: Thi Thu Em Vo, et al.
Publicado: (2021)