The classification of EEG-based wink signals: A CWT-Transfer Learning pipeline

Brain–Computer Interface technology plays a vital role in facilitating post-stroke patients’ ability to carry out their daily activities of living. The extraction of features and the classification of electroencephalogram (EEG) signals are pertinent parts in enabling such a system. This research inv...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jothi Letchumy Mahendra Kumar, Mamunur Rashid, Rabiu Muazu Musa, Mohd Azraai Mohd Razman, Norizam Sulaiman, Rozita Jailani, Anwar P.P. Abdul Majeed
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
BCI
CWT
EEG
SVM
Acceso en línea:https://doaj.org/article/215e4a22e4a44d9bb222b0e5ef531f48
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:215e4a22e4a44d9bb222b0e5ef531f48
record_format dspace
spelling oai:doaj.org-article:215e4a22e4a44d9bb222b0e5ef531f482021-11-30T04:16:34ZThe classification of EEG-based wink signals: A CWT-Transfer Learning pipeline2405-959510.1016/j.icte.2021.01.004https://doaj.org/article/215e4a22e4a44d9bb222b0e5ef531f482021-12-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2405959521000047https://doaj.org/toc/2405-9595Brain–Computer Interface technology plays a vital role in facilitating post-stroke patients’ ability to carry out their daily activities of living. The extraction of features and the classification of electroencephalogram (EEG) signals are pertinent parts in enabling such a system. This research investigates the efficacy of Transfer Learning models namely ResNet50 V2, ResNet101 V2, and ResNet152 V2 in extracting features from CWT converted wink-based EEG signals, prior to its classification via a fine-tuned Support Vector Machine (SVM) classifier. It was shown that ResNet152 V2-SVM pipeline could achieve an excellent accuracy on all train, test and validation datasets.Jothi Letchumy Mahendra KumarMamunur RashidRabiu Muazu MusaMohd Azraai Mohd RazmanNorizam SulaimanRozita JailaniAnwar P.P. Abdul MajeedElsevierarticleBCICWTEEGTransfer LearningSVMInformation technologyT58.5-58.64ENICT Express, Vol 7, Iss 4, Pp 421-425 (2021)
institution DOAJ
collection DOAJ
language EN
topic BCI
CWT
EEG
Transfer Learning
SVM
Information technology
T58.5-58.64
spellingShingle BCI
CWT
EEG
Transfer Learning
SVM
Information technology
T58.5-58.64
Jothi Letchumy Mahendra Kumar
Mamunur Rashid
Rabiu Muazu Musa
Mohd Azraai Mohd Razman
Norizam Sulaiman
Rozita Jailani
Anwar P.P. Abdul Majeed
The classification of EEG-based wink signals: A CWT-Transfer Learning pipeline
description Brain–Computer Interface technology plays a vital role in facilitating post-stroke patients’ ability to carry out their daily activities of living. The extraction of features and the classification of electroencephalogram (EEG) signals are pertinent parts in enabling such a system. This research investigates the efficacy of Transfer Learning models namely ResNet50 V2, ResNet101 V2, and ResNet152 V2 in extracting features from CWT converted wink-based EEG signals, prior to its classification via a fine-tuned Support Vector Machine (SVM) classifier. It was shown that ResNet152 V2-SVM pipeline could achieve an excellent accuracy on all train, test and validation datasets.
format article
author Jothi Letchumy Mahendra Kumar
Mamunur Rashid
Rabiu Muazu Musa
Mohd Azraai Mohd Razman
Norizam Sulaiman
Rozita Jailani
Anwar P.P. Abdul Majeed
author_facet Jothi Letchumy Mahendra Kumar
Mamunur Rashid
Rabiu Muazu Musa
Mohd Azraai Mohd Razman
Norizam Sulaiman
Rozita Jailani
Anwar P.P. Abdul Majeed
author_sort Jothi Letchumy Mahendra Kumar
title The classification of EEG-based wink signals: A CWT-Transfer Learning pipeline
title_short The classification of EEG-based wink signals: A CWT-Transfer Learning pipeline
title_full The classification of EEG-based wink signals: A CWT-Transfer Learning pipeline
title_fullStr The classification of EEG-based wink signals: A CWT-Transfer Learning pipeline
title_full_unstemmed The classification of EEG-based wink signals: A CWT-Transfer Learning pipeline
title_sort classification of eeg-based wink signals: a cwt-transfer learning pipeline
publisher Elsevier
publishDate 2021
url https://doaj.org/article/215e4a22e4a44d9bb222b0e5ef531f48
work_keys_str_mv AT jothiletchumymahendrakumar theclassificationofeegbasedwinksignalsacwttransferlearningpipeline
AT mamunurrashid theclassificationofeegbasedwinksignalsacwttransferlearningpipeline
AT rabiumuazumusa theclassificationofeegbasedwinksignalsacwttransferlearningpipeline
AT mohdazraaimohdrazman theclassificationofeegbasedwinksignalsacwttransferlearningpipeline
AT norizamsulaiman theclassificationofeegbasedwinksignalsacwttransferlearningpipeline
AT rozitajailani theclassificationofeegbasedwinksignalsacwttransferlearningpipeline
AT anwarppabdulmajeed theclassificationofeegbasedwinksignalsacwttransferlearningpipeline
AT jothiletchumymahendrakumar classificationofeegbasedwinksignalsacwttransferlearningpipeline
AT mamunurrashid classificationofeegbasedwinksignalsacwttransferlearningpipeline
AT rabiumuazumusa classificationofeegbasedwinksignalsacwttransferlearningpipeline
AT mohdazraaimohdrazman classificationofeegbasedwinksignalsacwttransferlearningpipeline
AT norizamsulaiman classificationofeegbasedwinksignalsacwttransferlearningpipeline
AT rozitajailani classificationofeegbasedwinksignalsacwttransferlearningpipeline
AT anwarppabdulmajeed classificationofeegbasedwinksignalsacwttransferlearningpipeline
_version_ 1718406791332626432