The classification of EEG-based wink signals: A CWT-Transfer Learning pipeline
Brain–Computer Interface technology plays a vital role in facilitating post-stroke patients’ ability to carry out their daily activities of living. The extraction of features and the classification of electroencephalogram (EEG) signals are pertinent parts in enabling such a system. This research inv...
Guardado en:
Autores principales: | Jothi Letchumy Mahendra Kumar, Mamunur Rashid, Rabiu Muazu Musa, Mohd Azraai Mohd Razman, Norizam Sulaiman, Rozita Jailani, Anwar P.P. Abdul Majeed |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/215e4a22e4a44d9bb222b0e5ef531f48 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Optimasi Parameter Support Vector Machine Berbasis Algoritma Firefly Pada Data Opini Film
por: Styawati, et al.
Publicado: (2021) -
Control de movimiento robótico con detección cognitiva y facial mediante Emotiv EEG
por: Monge Lay,Sebastián, et al.
Publicado: (2015) -
Sentiment Analysis of Work from Home Activity using SVM with Randomized Search Optimization
por: Fatihah Rahmadayana, et al.
Publicado: (2021) -
Realizing the Application of EEG Modeling in BCI Classification: Based on a Conditional GAN Converter
por: Xiaodong Zhang, et al.
Publicado: (2021) -
Comparative Analysis of SVM, XGBoost and Neural Network on Hate Speech Classification
por: Suwarno Liang
Publicado: (2021)