Manifold learning analysis suggests strategies to align single-cell multimodal data of neuronal electrophysiology and transcriptomics

Huang et al apply and benchmark multiple machine learning methods to align gene expression and electrophysiological data of single neuronal cells in the mouse brain from the Brain Initiative. Their approach reveals potential genome functions and gene regulatory mechanisms from gene expression to neu...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jiawei Huang, Jie Sheng, Daifeng Wang
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/216380d4edf44c03beae98a5f0ad5b06
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Huang et al apply and benchmark multiple machine learning methods to align gene expression and electrophysiological data of single neuronal cells in the mouse brain from the Brain Initiative. Their approach reveals potential genome functions and gene regulatory mechanisms from gene expression to neuronal electrophysiology.