Manifold learning analysis suggests strategies to align single-cell multimodal data of neuronal electrophysiology and transcriptomics
Huang et al apply and benchmark multiple machine learning methods to align gene expression and electrophysiological data of single neuronal cells in the mouse brain from the Brain Initiative. Their approach reveals potential genome functions and gene regulatory mechanisms from gene expression to neu...
Guardado en:
Autores principales: | Jiawei Huang, Jie Sheng, Daifeng Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/216380d4edf44c03beae98a5f0ad5b06 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A robot for high yield electrophysiology and morphology of single neurons in vivo
por: Lu Li, et al.
Publicado: (2017) -
Modeling the Influence of Data Structure on Learning in Neural Networks: The Hidden Manifold Model
por: Sebastian Goldt, et al.
Publicado: (2020) -
Scaled, high fidelity electrophysiological, morphological, and transcriptomic cell characterization
por: Brian R Lee, et al.
Publicado: (2021) -
Transcriptomic Studies Suggest a Coincident Role for Apoptosis and Pyroptosis but Not for Autophagic Neuronal Death in TBEV-Infected Human Neuronal/Glial Cells
por: Mazigh Fares, et al.
Publicado: (2021) -
Decoding speech perception by native and non-native speakers using single-trial electrophysiological data.
por: Alex Brandmeyer, et al.
Publicado: (2013)