Channel State Estimation in LTE-Based Heterogenous Networks Using Deep Learning
Following the continuous development of the information technology, the concept of dense urban networks has evolved as well. The powerful tools, like machine learning, break new ground in smart network and interface design. In this paper the concept of using deep learning for estimating the radio ch...
Guardado en:
Autores principales: | Krzysztof K. Cwalina, Piotr Rajchowski, Alicja Olejniczak, Olga Błaszkiewicz, Robert Burczyk |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/217152518b9a45b3ae85889bdbeac016 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
ASSESSING LTE TECHNOLOGY INTERFERENCE PARAMETERS
por: Ye. Bakhtiyarova, et al.
Publicado: (2020) -
Coexistence Scheme for Uncoordinated LTE and WiFi Networks Using Experience Replay Based Q-Learning
por: Merkebu Girmay, et al.
Publicado: (2021) -
Análisis de las prestaciones de los sistemas LTE y LTE-Advanced a partir de procesos de simulación
por: González,Giselle, et al.
Publicado: (2017) -
ОЦЕНКА ПАРАМЕТРОВ ПОМЕХ ТЕХНОЛОГИИ LTE
por: Е. А. Бахтиярова, et al.
Publicado: (2020) -
TARS: A Novel Mechanism for Truly Autonomous Resource Selection in LTE-V2V Mode 4
por: Izaz Ahmad Khan, et al.
Publicado: (2021)