Semantic Segmentation Network for Surface Defect Detection of Automobile Wheel Hub Fusing High-Resolution Feature and Multi-Scale Feature
Surface defect detection of an automobile wheel hub is important to the automobile industry because these defects directly affect the safety and appearance of automobiles. At present, surface defect detection networks based on convolutional neural network use many pooling layers when extracting feat...
Guardado en:
Autores principales: | Chaowei Tang, Xinxin Feng, Haotian Wen, Xu Zhou, Yanqing Shao, Xiaoli Zhou, Baojin Huang, Yunzhen Li |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/21793a93a16947cbab79ae8476842677 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Studies on Energy Consumption of Electric Light Commercial Vehicle Powered by In-Wheel Drive Modules
por: Piotr Szewczyk, et al.
Publicado: (2021) -
Estimation of Skid-Steered Wheeled Vehicle States Using STUKF with Adaptive Noise Adjustment
por: Xing Zhang, et al.
Publicado: (2021) -
Measurement method for longitudinal displacement of wheel/rail contact point using strain gauges put on wheels
por: Takatoshi HONDO, et al.
Publicado: (2020) -
Greenhouse Mobile Robot Navigation Using Wheel Revolution Encoding and Learning Algorithm
por: A Heidari, et al.
Publicado: (2021) -
Emotion Wheel Attention-Based Emotion Distribution Learning
por: Xueqiang Zeng, et al.
Publicado: (2021)