Machine learning analysis of extreme events in optical fibre modulation instability
Real-time characterisation of nonlinear processes in the time domain is challenging. Here, Närhi et al. show that machine learning techniques can help overcome this limitation and use them to infer time-domain properties of optical fibre modulation instability from spectral intensity measurements.
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2189e5907a1e496d9adc09f2e86e99a5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Real-time characterisation of nonlinear processes in the time domain is challenging. Here, Närhi et al. show that machine learning techniques can help overcome this limitation and use them to infer time-domain properties of optical fibre modulation instability from spectral intensity measurements. |
---|