Machine learning analysis of extreme events in optical fibre modulation instability
Real-time characterisation of nonlinear processes in the time domain is challenging. Here, Närhi et al. show that machine learning techniques can help overcome this limitation and use them to infer time-domain properties of optical fibre modulation instability from spectral intensity measurements.
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2189e5907a1e496d9adc09f2e86e99a5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:2189e5907a1e496d9adc09f2e86e99a5 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:2189e5907a1e496d9adc09f2e86e99a52021-12-02T17:33:19ZMachine learning analysis of extreme events in optical fibre modulation instability10.1038/s41467-018-07355-y2041-1723https://doaj.org/article/2189e5907a1e496d9adc09f2e86e99a52018-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-07355-yhttps://doaj.org/toc/2041-1723Real-time characterisation of nonlinear processes in the time domain is challenging. Here, Närhi et al. show that machine learning techniques can help overcome this limitation and use them to infer time-domain properties of optical fibre modulation instability from spectral intensity measurements.Mikko NärhiLauri SalmelaJuha ToivonenCyril BilletJohn M. DudleyGoëry GentyNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-11 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Mikko Närhi Lauri Salmela Juha Toivonen Cyril Billet John M. Dudley Goëry Genty Machine learning analysis of extreme events in optical fibre modulation instability |
description |
Real-time characterisation of nonlinear processes in the time domain is challenging. Here, Närhi et al. show that machine learning techniques can help overcome this limitation and use them to infer time-domain properties of optical fibre modulation instability from spectral intensity measurements. |
format |
article |
author |
Mikko Närhi Lauri Salmela Juha Toivonen Cyril Billet John M. Dudley Goëry Genty |
author_facet |
Mikko Närhi Lauri Salmela Juha Toivonen Cyril Billet John M. Dudley Goëry Genty |
author_sort |
Mikko Närhi |
title |
Machine learning analysis of extreme events in optical fibre modulation instability |
title_short |
Machine learning analysis of extreme events in optical fibre modulation instability |
title_full |
Machine learning analysis of extreme events in optical fibre modulation instability |
title_fullStr |
Machine learning analysis of extreme events in optical fibre modulation instability |
title_full_unstemmed |
Machine learning analysis of extreme events in optical fibre modulation instability |
title_sort |
machine learning analysis of extreme events in optical fibre modulation instability |
publisher |
Nature Portfolio |
publishDate |
2018 |
url |
https://doaj.org/article/2189e5907a1e496d9adc09f2e86e99a5 |
work_keys_str_mv |
AT mikkonarhi machinelearninganalysisofextremeeventsinopticalfibremodulationinstability AT laurisalmela machinelearninganalysisofextremeeventsinopticalfibremodulationinstability AT juhatoivonen machinelearninganalysisofextremeeventsinopticalfibremodulationinstability AT cyrilbillet machinelearninganalysisofextremeeventsinopticalfibremodulationinstability AT johnmdudley machinelearninganalysisofextremeeventsinopticalfibremodulationinstability AT goerygenty machinelearninganalysisofextremeeventsinopticalfibremodulationinstability |
_version_ |
1718379988319731712 |