Machine learning analysis of extreme events in optical fibre modulation instability

Real-time characterisation of nonlinear processes in the time domain is challenging. Here, Närhi et al. show that machine learning techniques can help overcome this limitation and use them to infer time-domain properties of optical fibre modulation instability from spectral intensity measurements.

Guardado en:
Detalles Bibliográficos
Autores principales: Mikko Närhi, Lauri Salmela, Juha Toivonen, Cyril Billet, John M. Dudley, Goëry Genty
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/2189e5907a1e496d9adc09f2e86e99a5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:2189e5907a1e496d9adc09f2e86e99a5
record_format dspace
spelling oai:doaj.org-article:2189e5907a1e496d9adc09f2e86e99a52021-12-02T17:33:19ZMachine learning analysis of extreme events in optical fibre modulation instability10.1038/s41467-018-07355-y2041-1723https://doaj.org/article/2189e5907a1e496d9adc09f2e86e99a52018-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-07355-yhttps://doaj.org/toc/2041-1723Real-time characterisation of nonlinear processes in the time domain is challenging. Here, Närhi et al. show that machine learning techniques can help overcome this limitation and use them to infer time-domain properties of optical fibre modulation instability from spectral intensity measurements.Mikko NärhiLauri SalmelaJuha ToivonenCyril BilletJohn M. DudleyGoëry GentyNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-11 (2018)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Mikko Närhi
Lauri Salmela
Juha Toivonen
Cyril Billet
John M. Dudley
Goëry Genty
Machine learning analysis of extreme events in optical fibre modulation instability
description Real-time characterisation of nonlinear processes in the time domain is challenging. Here, Närhi et al. show that machine learning techniques can help overcome this limitation and use them to infer time-domain properties of optical fibre modulation instability from spectral intensity measurements.
format article
author Mikko Närhi
Lauri Salmela
Juha Toivonen
Cyril Billet
John M. Dudley
Goëry Genty
author_facet Mikko Närhi
Lauri Salmela
Juha Toivonen
Cyril Billet
John M. Dudley
Goëry Genty
author_sort Mikko Närhi
title Machine learning analysis of extreme events in optical fibre modulation instability
title_short Machine learning analysis of extreme events in optical fibre modulation instability
title_full Machine learning analysis of extreme events in optical fibre modulation instability
title_fullStr Machine learning analysis of extreme events in optical fibre modulation instability
title_full_unstemmed Machine learning analysis of extreme events in optical fibre modulation instability
title_sort machine learning analysis of extreme events in optical fibre modulation instability
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/2189e5907a1e496d9adc09f2e86e99a5
work_keys_str_mv AT mikkonarhi machinelearninganalysisofextremeeventsinopticalfibremodulationinstability
AT laurisalmela machinelearninganalysisofextremeeventsinopticalfibremodulationinstability
AT juhatoivonen machinelearninganalysisofextremeeventsinopticalfibremodulationinstability
AT cyrilbillet machinelearninganalysisofextremeeventsinopticalfibremodulationinstability
AT johnmdudley machinelearninganalysisofextremeeventsinopticalfibremodulationinstability
AT goerygenty machinelearninganalysisofextremeeventsinopticalfibremodulationinstability
_version_ 1718379988319731712