Machine learning analysis of extreme events in optical fibre modulation instability
Real-time characterisation of nonlinear processes in the time domain is challenging. Here, Närhi et al. show that machine learning techniques can help overcome this limitation and use them to infer time-domain properties of optical fibre modulation instability from spectral intensity measurements.
Guardado en:
Autores principales: | Mikko Närhi, Lauri Salmela, Juha Toivonen, Cyril Billet, John M. Dudley, Goëry Genty |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2189e5907a1e496d9adc09f2e86e99a5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Real-time measurements of spontaneous breathers and rogue wave events in optical fibre modulation instability
por: Mikko Närhi, et al.
Publicado: (2016) -
Machine learning analysis of rogue solitons in supercontinuum generation
por: Lauri Salmela, et al.
Publicado: (2020) -
W-Chirped optical solitons and modulation instability analysis of Chen–Lee–Liu equation in optical monomode fibres
por: Inc Mustafa, et al.
Publicado: (2021) -
Intracavity incoherent supercontinuum dynamics and rogue waves in a broadband dissipative soliton laser
por: Fanchao Meng, et al.
Publicado: (2021) -
Fibre-optic metadevice for all-optical signal modulation based on coherent absorption
por: Angelos Xomalis, et al.
Publicado: (2018)