Machine learning analysis of extreme events in optical fibre modulation instability
Real-time characterisation of nonlinear processes in the time domain is challenging. Here, Närhi et al. show that machine learning techniques can help overcome this limitation and use them to infer time-domain properties of optical fibre modulation instability from spectral intensity measurements.
Enregistré dans:
Auteurs principaux: | Mikko Närhi, Lauri Salmela, Juha Toivonen, Cyril Billet, John M. Dudley, Goëry Genty |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2018
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/2189e5907a1e496d9adc09f2e86e99a5 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Real-time measurements of spontaneous breathers and rogue wave events in optical fibre modulation instability
par: Mikko Närhi, et autres
Publié: (2016) -
Machine learning analysis of rogue solitons in supercontinuum generation
par: Lauri Salmela, et autres
Publié: (2020) -
W-Chirped optical solitons and modulation instability analysis of Chen–Lee–Liu equation in optical monomode fibres
par: Inc Mustafa, et autres
Publié: (2021) -
Intracavity incoherent supercontinuum dynamics and rogue waves in a broadband dissipative soliton laser
par: Fanchao Meng, et autres
Publié: (2021) -
Fibre-optic metadevice for all-optical signal modulation based on coherent absorption
par: Angelos Xomalis, et autres
Publié: (2018)