Fixed Points for Pseudocontractive Mappings on Unbounded Domains

<p/> <p>We give some fixed point results for pseudocontractive mappings on nonbounded domains which allow us to obtain generalizations of recent fixed point theorems of Penot, Isac, and N&#233;meth. An application to integral equations is given.</p>

Guardado en:
Detalles Bibliográficos
Autores principales: Garc&#237;a-Falset Jes&#250;s, Llorens-Fuster E
Formato: article
Lenguaje:EN
Publicado: SpringerOpen 2010
Materias:
Acceso en línea:https://doaj.org/article/218af43034054657a3aea328be234152
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:218af43034054657a3aea328be234152
record_format dspace
spelling oai:doaj.org-article:218af43034054657a3aea328be2341522021-12-02T11:42:56ZFixed Points for Pseudocontractive Mappings on Unbounded Domains1687-18201687-1812https://doaj.org/article/218af43034054657a3aea328be2341522010-01-01T00:00:00Zhttp://www.fixedpointtheoryandapplications.com/content/2010/769858https://doaj.org/toc/1687-1820https://doaj.org/toc/1687-1812<p/> <p>We give some fixed point results for pseudocontractive mappings on nonbounded domains which allow us to obtain generalizations of recent fixed point theorems of Penot, Isac, and N&#233;meth. An application to integral equations is given.</p>Garc&#237;a-Falset Jes&#250;sLlorens-Fuster ESpringerOpenarticleApplied mathematics. Quantitative methodsT57-57.97AnalysisQA299.6-433ENFixed Point Theory and Applications, Vol 2010, Iss 1, p 769858 (2010)
institution DOAJ
collection DOAJ
language EN
topic Applied mathematics. Quantitative methods
T57-57.97
Analysis
QA299.6-433
spellingShingle Applied mathematics. Quantitative methods
T57-57.97
Analysis
QA299.6-433
Garc&#237;a-Falset Jes&#250;s
Llorens-Fuster E
Fixed Points for Pseudocontractive Mappings on Unbounded Domains
description <p/> <p>We give some fixed point results for pseudocontractive mappings on nonbounded domains which allow us to obtain generalizations of recent fixed point theorems of Penot, Isac, and N&#233;meth. An application to integral equations is given.</p>
format article
author Garc&#237;a-Falset Jes&#250;s
Llorens-Fuster E
author_facet Garc&#237;a-Falset Jes&#250;s
Llorens-Fuster E
author_sort Garc&#237;a-Falset Jes&#250;s
title Fixed Points for Pseudocontractive Mappings on Unbounded Domains
title_short Fixed Points for Pseudocontractive Mappings on Unbounded Domains
title_full Fixed Points for Pseudocontractive Mappings on Unbounded Domains
title_fullStr Fixed Points for Pseudocontractive Mappings on Unbounded Domains
title_full_unstemmed Fixed Points for Pseudocontractive Mappings on Unbounded Domains
title_sort fixed points for pseudocontractive mappings on unbounded domains
publisher SpringerOpen
publishDate 2010
url https://doaj.org/article/218af43034054657a3aea328be234152
work_keys_str_mv AT garc237afalsetjes250s fixedpointsforpseudocontractivemappingsonunboundeddomains
AT llorensfustere fixedpointsforpseudocontractivemappingsonunboundeddomains
_version_ 1718395329897824256