Fixed Points for Pseudocontractive Mappings on Unbounded Domains
<p/> <p>We give some fixed point results for pseudocontractive mappings on nonbounded domains which allow us to obtain generalizations of recent fixed point theorems of Penot, Isac, and Németh. An application to integral equations is given.</p>
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2010
|
Materias: | |
Acceso en línea: | https://doaj.org/article/218af43034054657a3aea328be234152 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:218af43034054657a3aea328be234152 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:218af43034054657a3aea328be2341522021-12-02T11:42:56ZFixed Points for Pseudocontractive Mappings on Unbounded Domains1687-18201687-1812https://doaj.org/article/218af43034054657a3aea328be2341522010-01-01T00:00:00Zhttp://www.fixedpointtheoryandapplications.com/content/2010/769858https://doaj.org/toc/1687-1820https://doaj.org/toc/1687-1812<p/> <p>We give some fixed point results for pseudocontractive mappings on nonbounded domains which allow us to obtain generalizations of recent fixed point theorems of Penot, Isac, and Németh. An application to integral equations is given.</p>García-Falset JesúsLlorens-Fuster ESpringerOpenarticleApplied mathematics. Quantitative methodsT57-57.97AnalysisQA299.6-433ENFixed Point Theory and Applications, Vol 2010, Iss 1, p 769858 (2010) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Applied mathematics. Quantitative methods T57-57.97 Analysis QA299.6-433 |
spellingShingle |
Applied mathematics. Quantitative methods T57-57.97 Analysis QA299.6-433 García-Falset Jesús Llorens-Fuster E Fixed Points for Pseudocontractive Mappings on Unbounded Domains |
description |
<p/> <p>We give some fixed point results for pseudocontractive mappings on nonbounded domains which allow us to obtain generalizations of recent fixed point theorems of Penot, Isac, and Németh. An application to integral equations is given.</p> |
format |
article |
author |
García-Falset Jesús Llorens-Fuster E |
author_facet |
García-Falset Jesús Llorens-Fuster E |
author_sort |
García-Falset Jesús |
title |
Fixed Points for Pseudocontractive Mappings on Unbounded Domains |
title_short |
Fixed Points for Pseudocontractive Mappings on Unbounded Domains |
title_full |
Fixed Points for Pseudocontractive Mappings on Unbounded Domains |
title_fullStr |
Fixed Points for Pseudocontractive Mappings on Unbounded Domains |
title_full_unstemmed |
Fixed Points for Pseudocontractive Mappings on Unbounded Domains |
title_sort |
fixed points for pseudocontractive mappings on unbounded domains |
publisher |
SpringerOpen |
publishDate |
2010 |
url |
https://doaj.org/article/218af43034054657a3aea328be234152 |
work_keys_str_mv |
AT garc237afalsetjes250s fixedpointsforpseudocontractivemappingsonunboundeddomains AT llorensfustere fixedpointsforpseudocontractivemappingsonunboundeddomains |
_version_ |
1718395329897824256 |