Graph neural networks for an accurate and interpretable prediction of the properties of polycrystalline materials
Abstract Various machine learning models have been used to predict the properties of polycrystalline materials, but none of them directly consider the physical interactions among neighboring grains despite such microscopic interactions critically determining macroscopic material properties. Here, we...
Guardado en:
Autores principales: | Minyi Dai, Mehmet F. Demirel, Yingyu Liang, Jia-Mian Hu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/21938143166d47f1b76bb49780e33668 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Accurate and scalable graph neural network force field and molecular dynamics with direct force architecture
por: Cheol Woo Park, et al.
Publicado: (2021) -
Benchmarking graph neural networks for materials chemistry
por: Victor Fung, et al.
Publicado: (2021) -
Atomistic Line Graph Neural Network for improved materials property predictions
por: Kamal Choudhary, et al.
Publicado: (2021) -
PRISMS-Fatigue computational framework for fatigue analysis in polycrystalline metals and alloys
por: Mohammadreza Yaghoobi, et al.
Publicado: (2021) -
Facile measurement of single-crystal elastic constants from polycrystalline samples
por: Xinpeng Du, et al.
Publicado: (2017)