Graph neural networks for an accurate and interpretable prediction of the properties of polycrystalline materials

Abstract Various machine learning models have been used to predict the properties of polycrystalline materials, but none of them directly consider the physical interactions among neighboring grains despite such microscopic interactions critically determining macroscopic material properties. Here, we...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Minyi Dai, Mehmet F. Demirel, Yingyu Liang, Jia-Mian Hu
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/21938143166d47f1b76bb49780e33668
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!