Graph neural networks for an accurate and interpretable prediction of the properties of polycrystalline materials

Abstract Various machine learning models have been used to predict the properties of polycrystalline materials, but none of them directly consider the physical interactions among neighboring grains despite such microscopic interactions critically determining macroscopic material properties. Here, we...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Minyi Dai, Mehmet F. Demirel, Yingyu Liang, Jia-Mian Hu
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
Accès en ligne:https://doaj.org/article/21938143166d47f1b76bb49780e33668
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!