Graph neural networks for an accurate and interpretable prediction of the properties of polycrystalline materials
Abstract Various machine learning models have been used to predict the properties of polycrystalline materials, but none of them directly consider the physical interactions among neighboring grains despite such microscopic interactions critically determining macroscopic material properties. Here, we...
Enregistré dans:
Auteurs principaux: | , , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/21938143166d47f1b76bb49780e33668 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|