MK2 promotes Tfcp2l1 degradation via β-TrCP ubiquitin ligase to regulate mouse embryonic stem cell self-renewal
Summary: Tfcp2l1 can maintain mouse embryonic stem cell (mESC) self-renewal. However, it remains unknown how Tfcp2l1 protein stability is regulated. Here, we demonstrate that β-transducin repeat-containing protein (β-TrCP) targets Tfcp2l1 for ubiquitination and degradation in a mitogen-activated pro...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/219f32317c2745a6baa0c76ec945fb8f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Summary: Tfcp2l1 can maintain mouse embryonic stem cell (mESC) self-renewal. However, it remains unknown how Tfcp2l1 protein stability is regulated. Here, we demonstrate that β-transducin repeat-containing protein (β-TrCP) targets Tfcp2l1 for ubiquitination and degradation in a mitogen-activated protein kinase (MAPK)-activated protein kinase 2 (MK2)-dependent manner. Specifically, β-TrCP1 and β-TrCP2 recognize and ubiquitylate Tfcp2l1 through the canonical β-TrCP-binding motif DSGDNS, in which the serine residues have been phosphorylated by MK2. Point mutation of serine-to-alanine residues reduces β-TrCP-mediated ubiquitylation and enhances the ability of Tfcp2l1 to promote mESC self-renewal while repressing the speciation of the endoderm, mesoderm, and trophectoderm. Similarly, inhibition of MK2 reduces the association of Tfcp2l1 with β-TrCP1 and increases the self-renewal-promoting effects of Tfcp2l1, whereas overexpression of MK2 or β-TrCP genes decreases Tfcp2l1 protein levels and induces mESC differentiation. Collectively, our study reveals a posttranslational modification of Tfcp2l1 that will expand our understanding of the regulatory network of stem cell pluripotency. |
---|