A high-precision feature extraction network of fatigue speech from air traffic controller radiotelephony based on improved deep learning
Air traffic controller (ATC) fatigue is receiving considerable attention in recent studies because it represents a major cause of air traffic incidences. Research has revealed that the presence of fatigue can be detected by analysing speech utterances. However, constructing a complete labelled fatig...
Guardado en:
Autores principales: | Zhiyuan Shen, Yitao Wei |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/21a35614d4a84ad8b009ec0143e99a47 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Klasifikasi Kelas Kata (Part-Of-Speech Tagging) untuk Bahasa Madura Menggunakan Algoritme Viterbi
por: Ilham Firmansyah, et al.
Publicado: (2021) -
Optimization and improvement of fake news detection using deep learning approaches for societal benefit
por: Tavishee Chauhan, M.E, et al.
Publicado: (2021) -
Intelligent Planning and Research on Urban Traffic Congestion
por: Qigang Zhu, et al.
Publicado: (2021) -
THE EXPERT SYSTEM OF CONTROL AND KNOWLEDGE ASSESSMENT
por: V. Golovachyova, et al.
Publicado: (2020) -
Pattern Recognition of Human Face With Photos Using KNN Algorithm
por: Dedy Kurniadi, et al.
Publicado: (2021)