Genetic basis for spontaneous hybrid genome doubling during allopolyploid speciation of common wheat shown by natural variation analyses of the paternal species.

The complex process of allopolyploid speciation includes various mechanisms ranging from species crosses and hybrid genome doubling to genome alterations and the establishment of new allopolyploids as persisting natural entities. Currently, little is known about the genetic mechanisms that underlie...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yoshihiro Matsuoka, Shuhei Nasuda, Yasuyo Ashida, Miyuki Nitta, Hisashi Tsujimoto, Shigeo Takumi, Taihachi Kawahara
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2013
Materias:
R
Q
Acceso en línea:https://doaj.org/article/21c91d2d26524bf997d06a64207eeec4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:21c91d2d26524bf997d06a64207eeec4
record_format dspace
spelling oai:doaj.org-article:21c91d2d26524bf997d06a64207eeec42021-11-18T09:00:41ZGenetic basis for spontaneous hybrid genome doubling during allopolyploid speciation of common wheat shown by natural variation analyses of the paternal species.1932-620310.1371/journal.pone.0068310https://doaj.org/article/21c91d2d26524bf997d06a64207eeec42013-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23950867/?tool=EBIhttps://doaj.org/toc/1932-6203The complex process of allopolyploid speciation includes various mechanisms ranging from species crosses and hybrid genome doubling to genome alterations and the establishment of new allopolyploids as persisting natural entities. Currently, little is known about the genetic mechanisms that underlie hybrid genome doubling, despite the fact that natural allopolyploid formation is highly dependent on this phenomenon. We examined the genetic basis for the spontaneous genome doubling of triploid F1 hybrids between the direct ancestors of allohexaploid common wheat (Triticum aestivum L., AABBDD genome), namely Triticumturgidum L. (AABB genome) and Aegilopstauschii Coss. (DD genome). An Ae. tauschii intraspecific lineage that is closely related to the D genome of common wheat was identified by population-based analysis. Two representative accessions, one that produces a high-genome-doubling-frequency hybrid when crossed with a T. turgidum cultivar and the other that produces a low-genome-doubling-frequency hybrid with the same cultivar, were chosen from that lineage for further analyses. A series of investigations including fertility analysis, immunostaining, and quantitative trait locus (QTL) analysis showed that (1) production of functional unreduced gametes through nonreductional meiosis is an early step key to successful hybrid genome doubling, (2) first division restitution is one of the cytological mechanisms that cause meiotic nonreduction during the production of functional male unreduced gametes, and (3) six QTLs in the Ae. tauschii genome, most of which likely regulate nonreductional meiosis and its subsequent gamete production processes, are involved in hybrid genome doubling. Interlineage comparisons of Ae. tauschii's ability to cause hybrid genome doubling suggested an evolutionary model for the natural variation pattern of the trait in which non-deleterious mutations in six QTLs may have important roles. The findings of this study demonstrated that the genetic mechanisms for hybrid genome doubling could be studied based on the intrinsic natural variation that exists in the parental species.Yoshihiro MatsuokaShuhei NasudaYasuyo AshidaMiyuki NittaHisashi TsujimotoShigeo TakumiTaihachi KawaharaPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 8, Iss 8, p e68310 (2013)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Yoshihiro Matsuoka
Shuhei Nasuda
Yasuyo Ashida
Miyuki Nitta
Hisashi Tsujimoto
Shigeo Takumi
Taihachi Kawahara
Genetic basis for spontaneous hybrid genome doubling during allopolyploid speciation of common wheat shown by natural variation analyses of the paternal species.
description The complex process of allopolyploid speciation includes various mechanisms ranging from species crosses and hybrid genome doubling to genome alterations and the establishment of new allopolyploids as persisting natural entities. Currently, little is known about the genetic mechanisms that underlie hybrid genome doubling, despite the fact that natural allopolyploid formation is highly dependent on this phenomenon. We examined the genetic basis for the spontaneous genome doubling of triploid F1 hybrids between the direct ancestors of allohexaploid common wheat (Triticum aestivum L., AABBDD genome), namely Triticumturgidum L. (AABB genome) and Aegilopstauschii Coss. (DD genome). An Ae. tauschii intraspecific lineage that is closely related to the D genome of common wheat was identified by population-based analysis. Two representative accessions, one that produces a high-genome-doubling-frequency hybrid when crossed with a T. turgidum cultivar and the other that produces a low-genome-doubling-frequency hybrid with the same cultivar, were chosen from that lineage for further analyses. A series of investigations including fertility analysis, immunostaining, and quantitative trait locus (QTL) analysis showed that (1) production of functional unreduced gametes through nonreductional meiosis is an early step key to successful hybrid genome doubling, (2) first division restitution is one of the cytological mechanisms that cause meiotic nonreduction during the production of functional male unreduced gametes, and (3) six QTLs in the Ae. tauschii genome, most of which likely regulate nonreductional meiosis and its subsequent gamete production processes, are involved in hybrid genome doubling. Interlineage comparisons of Ae. tauschii's ability to cause hybrid genome doubling suggested an evolutionary model for the natural variation pattern of the trait in which non-deleterious mutations in six QTLs may have important roles. The findings of this study demonstrated that the genetic mechanisms for hybrid genome doubling could be studied based on the intrinsic natural variation that exists in the parental species.
format article
author Yoshihiro Matsuoka
Shuhei Nasuda
Yasuyo Ashida
Miyuki Nitta
Hisashi Tsujimoto
Shigeo Takumi
Taihachi Kawahara
author_facet Yoshihiro Matsuoka
Shuhei Nasuda
Yasuyo Ashida
Miyuki Nitta
Hisashi Tsujimoto
Shigeo Takumi
Taihachi Kawahara
author_sort Yoshihiro Matsuoka
title Genetic basis for spontaneous hybrid genome doubling during allopolyploid speciation of common wheat shown by natural variation analyses of the paternal species.
title_short Genetic basis for spontaneous hybrid genome doubling during allopolyploid speciation of common wheat shown by natural variation analyses of the paternal species.
title_full Genetic basis for spontaneous hybrid genome doubling during allopolyploid speciation of common wheat shown by natural variation analyses of the paternal species.
title_fullStr Genetic basis for spontaneous hybrid genome doubling during allopolyploid speciation of common wheat shown by natural variation analyses of the paternal species.
title_full_unstemmed Genetic basis for spontaneous hybrid genome doubling during allopolyploid speciation of common wheat shown by natural variation analyses of the paternal species.
title_sort genetic basis for spontaneous hybrid genome doubling during allopolyploid speciation of common wheat shown by natural variation analyses of the paternal species.
publisher Public Library of Science (PLoS)
publishDate 2013
url https://doaj.org/article/21c91d2d26524bf997d06a64207eeec4
work_keys_str_mv AT yoshihiromatsuoka geneticbasisforspontaneoushybridgenomedoublingduringallopolyploidspeciationofcommonwheatshownbynaturalvariationanalysesofthepaternalspecies
AT shuheinasuda geneticbasisforspontaneoushybridgenomedoublingduringallopolyploidspeciationofcommonwheatshownbynaturalvariationanalysesofthepaternalspecies
AT yasuyoashida geneticbasisforspontaneoushybridgenomedoublingduringallopolyploidspeciationofcommonwheatshownbynaturalvariationanalysesofthepaternalspecies
AT miyukinitta geneticbasisforspontaneoushybridgenomedoublingduringallopolyploidspeciationofcommonwheatshownbynaturalvariationanalysesofthepaternalspecies
AT hisashitsujimoto geneticbasisforspontaneoushybridgenomedoublingduringallopolyploidspeciationofcommonwheatshownbynaturalvariationanalysesofthepaternalspecies
AT shigeotakumi geneticbasisforspontaneoushybridgenomedoublingduringallopolyploidspeciationofcommonwheatshownbynaturalvariationanalysesofthepaternalspecies
AT taihachikawahara geneticbasisforspontaneoushybridgenomedoublingduringallopolyploidspeciationofcommonwheatshownbynaturalvariationanalysesofthepaternalspecies
_version_ 1718421011228000256