Visual explanations from spiking neural networks using inter-spike intervals
Abstract By emulating biological features in brain, Spiking Neural Networks (SNNs) offer an energy-efficient alternative to conventional deep learning. To make SNNs ubiquitous, a ‘visual explanation’ technique for analysing and explaining the internal spike behavior of such temporal deep SNNs is cru...
Guardado en:
Autores principales: | Youngeun Kim, Priyadarshini Panda |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/21c9d821aa6d46349f250d5a2ab3e691 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Symmetry perception with spiking neural networks
por: Jonathan K. George, et al.
Publicado: (2021) -
A biomimetic neural encoder for spiking neural network
por: Shiva Subbulakshmi Radhakrishnan, et al.
Publicado: (2021) -
A convolutional neural network for estimating synaptic connectivity from spike trains
por: Daisuke Endo, et al.
Publicado: (2021) -
FNS allows efficient event-driven spiking neural network simulations based on a neuron model supporting spike latency
por: Gianluca Susi, et al.
Publicado: (2021) -
Scalable and accurate method for neuronal ensemble detection in spiking neural networks.
por: Rubén Herzog, et al.
Publicado: (2021)