Predicting gastric cancer outcome from resected lymph node histopathology images using deep learning

The ratio of tumour area to metastatic lymph node area (T/MLN) is a clinical indicator that can improve prognosis prediction of gastric cancer. Here, the authors use machine learning on whole slide images to generate a method that can predict metastatic lymph nodes and obtain T/MLN.

Guardado en:
Detalles Bibliográficos
Autores principales: Xiaodong Wang, Ying Chen, Yunshu Gao, Huiqing Zhang, Zehui Guan, Zhou Dong, Yuxuan Zheng, Jiarui Jiang, Haoqing Yang, Liming Wang, Xianming Huang, Lirong Ai, Wenlong Yu, Hongwei Li, Changsheng Dong, Zhou Zhou, Xiyang Liu, Guanzhen Yu
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/21cb9a0523de44f7b48e8fed3c596529
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:21cb9a0523de44f7b48e8fed3c596529
record_format dspace
spelling oai:doaj.org-article:21cb9a0523de44f7b48e8fed3c5965292021-12-02T13:30:36ZPredicting gastric cancer outcome from resected lymph node histopathology images using deep learning10.1038/s41467-021-21674-72041-1723https://doaj.org/article/21cb9a0523de44f7b48e8fed3c5965292021-03-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-21674-7https://doaj.org/toc/2041-1723The ratio of tumour area to metastatic lymph node area (T/MLN) is a clinical indicator that can improve prognosis prediction of gastric cancer. Here, the authors use machine learning on whole slide images to generate a method that can predict metastatic lymph nodes and obtain T/MLN.Xiaodong WangYing ChenYunshu GaoHuiqing ZhangZehui GuanZhou DongYuxuan ZhengJiarui JiangHaoqing YangLiming WangXianming HuangLirong AiWenlong YuHongwei LiChangsheng DongZhou ZhouXiyang LiuGuanzhen YuNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-13 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Xiaodong Wang
Ying Chen
Yunshu Gao
Huiqing Zhang
Zehui Guan
Zhou Dong
Yuxuan Zheng
Jiarui Jiang
Haoqing Yang
Liming Wang
Xianming Huang
Lirong Ai
Wenlong Yu
Hongwei Li
Changsheng Dong
Zhou Zhou
Xiyang Liu
Guanzhen Yu
Predicting gastric cancer outcome from resected lymph node histopathology images using deep learning
description The ratio of tumour area to metastatic lymph node area (T/MLN) is a clinical indicator that can improve prognosis prediction of gastric cancer. Here, the authors use machine learning on whole slide images to generate a method that can predict metastatic lymph nodes and obtain T/MLN.
format article
author Xiaodong Wang
Ying Chen
Yunshu Gao
Huiqing Zhang
Zehui Guan
Zhou Dong
Yuxuan Zheng
Jiarui Jiang
Haoqing Yang
Liming Wang
Xianming Huang
Lirong Ai
Wenlong Yu
Hongwei Li
Changsheng Dong
Zhou Zhou
Xiyang Liu
Guanzhen Yu
author_facet Xiaodong Wang
Ying Chen
Yunshu Gao
Huiqing Zhang
Zehui Guan
Zhou Dong
Yuxuan Zheng
Jiarui Jiang
Haoqing Yang
Liming Wang
Xianming Huang
Lirong Ai
Wenlong Yu
Hongwei Li
Changsheng Dong
Zhou Zhou
Xiyang Liu
Guanzhen Yu
author_sort Xiaodong Wang
title Predicting gastric cancer outcome from resected lymph node histopathology images using deep learning
title_short Predicting gastric cancer outcome from resected lymph node histopathology images using deep learning
title_full Predicting gastric cancer outcome from resected lymph node histopathology images using deep learning
title_fullStr Predicting gastric cancer outcome from resected lymph node histopathology images using deep learning
title_full_unstemmed Predicting gastric cancer outcome from resected lymph node histopathology images using deep learning
title_sort predicting gastric cancer outcome from resected lymph node histopathology images using deep learning
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/21cb9a0523de44f7b48e8fed3c596529
work_keys_str_mv AT xiaodongwang predictinggastriccanceroutcomefromresectedlymphnodehistopathologyimagesusingdeeplearning
AT yingchen predictinggastriccanceroutcomefromresectedlymphnodehistopathologyimagesusingdeeplearning
AT yunshugao predictinggastriccanceroutcomefromresectedlymphnodehistopathologyimagesusingdeeplearning
AT huiqingzhang predictinggastriccanceroutcomefromresectedlymphnodehistopathologyimagesusingdeeplearning
AT zehuiguan predictinggastriccanceroutcomefromresectedlymphnodehistopathologyimagesusingdeeplearning
AT zhoudong predictinggastriccanceroutcomefromresectedlymphnodehistopathologyimagesusingdeeplearning
AT yuxuanzheng predictinggastriccanceroutcomefromresectedlymphnodehistopathologyimagesusingdeeplearning
AT jiaruijiang predictinggastriccanceroutcomefromresectedlymphnodehistopathologyimagesusingdeeplearning
AT haoqingyang predictinggastriccanceroutcomefromresectedlymphnodehistopathologyimagesusingdeeplearning
AT limingwang predictinggastriccanceroutcomefromresectedlymphnodehistopathologyimagesusingdeeplearning
AT xianminghuang predictinggastriccanceroutcomefromresectedlymphnodehistopathologyimagesusingdeeplearning
AT lirongai predictinggastriccanceroutcomefromresectedlymphnodehistopathologyimagesusingdeeplearning
AT wenlongyu predictinggastriccanceroutcomefromresectedlymphnodehistopathologyimagesusingdeeplearning
AT hongweili predictinggastriccanceroutcomefromresectedlymphnodehistopathologyimagesusingdeeplearning
AT changshengdong predictinggastriccanceroutcomefromresectedlymphnodehistopathologyimagesusingdeeplearning
AT zhouzhou predictinggastriccanceroutcomefromresectedlymphnodehistopathologyimagesusingdeeplearning
AT xiyangliu predictinggastriccanceroutcomefromresectedlymphnodehistopathologyimagesusingdeeplearning
AT guanzhenyu predictinggastriccanceroutcomefromresectedlymphnodehistopathologyimagesusingdeeplearning
_version_ 1718392902270320640