Predicting gastric cancer outcome from resected lymph node histopathology images using deep learning
The ratio of tumour area to metastatic lymph node area (T/MLN) is a clinical indicator that can improve prognosis prediction of gastric cancer. Here, the authors use machine learning on whole slide images to generate a method that can predict metastatic lymph nodes and obtain T/MLN.
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/21cb9a0523de44f7b48e8fed3c596529 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:21cb9a0523de44f7b48e8fed3c596529 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:21cb9a0523de44f7b48e8fed3c5965292021-12-02T13:30:36ZPredicting gastric cancer outcome from resected lymph node histopathology images using deep learning10.1038/s41467-021-21674-72041-1723https://doaj.org/article/21cb9a0523de44f7b48e8fed3c5965292021-03-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-21674-7https://doaj.org/toc/2041-1723The ratio of tumour area to metastatic lymph node area (T/MLN) is a clinical indicator that can improve prognosis prediction of gastric cancer. Here, the authors use machine learning on whole slide images to generate a method that can predict metastatic lymph nodes and obtain T/MLN.Xiaodong WangYing ChenYunshu GaoHuiqing ZhangZehui GuanZhou DongYuxuan ZhengJiarui JiangHaoqing YangLiming WangXianming HuangLirong AiWenlong YuHongwei LiChangsheng DongZhou ZhouXiyang LiuGuanzhen YuNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-13 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Xiaodong Wang Ying Chen Yunshu Gao Huiqing Zhang Zehui Guan Zhou Dong Yuxuan Zheng Jiarui Jiang Haoqing Yang Liming Wang Xianming Huang Lirong Ai Wenlong Yu Hongwei Li Changsheng Dong Zhou Zhou Xiyang Liu Guanzhen Yu Predicting gastric cancer outcome from resected lymph node histopathology images using deep learning |
description |
The ratio of tumour area to metastatic lymph node area (T/MLN) is a clinical indicator that can improve prognosis prediction of gastric cancer. Here, the authors use machine learning on whole slide images to generate a method that can predict metastatic lymph nodes and obtain T/MLN. |
format |
article |
author |
Xiaodong Wang Ying Chen Yunshu Gao Huiqing Zhang Zehui Guan Zhou Dong Yuxuan Zheng Jiarui Jiang Haoqing Yang Liming Wang Xianming Huang Lirong Ai Wenlong Yu Hongwei Li Changsheng Dong Zhou Zhou Xiyang Liu Guanzhen Yu |
author_facet |
Xiaodong Wang Ying Chen Yunshu Gao Huiqing Zhang Zehui Guan Zhou Dong Yuxuan Zheng Jiarui Jiang Haoqing Yang Liming Wang Xianming Huang Lirong Ai Wenlong Yu Hongwei Li Changsheng Dong Zhou Zhou Xiyang Liu Guanzhen Yu |
author_sort |
Xiaodong Wang |
title |
Predicting gastric cancer outcome from resected lymph node histopathology images using deep learning |
title_short |
Predicting gastric cancer outcome from resected lymph node histopathology images using deep learning |
title_full |
Predicting gastric cancer outcome from resected lymph node histopathology images using deep learning |
title_fullStr |
Predicting gastric cancer outcome from resected lymph node histopathology images using deep learning |
title_full_unstemmed |
Predicting gastric cancer outcome from resected lymph node histopathology images using deep learning |
title_sort |
predicting gastric cancer outcome from resected lymph node histopathology images using deep learning |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/21cb9a0523de44f7b48e8fed3c596529 |
work_keys_str_mv |
AT xiaodongwang predictinggastriccanceroutcomefromresectedlymphnodehistopathologyimagesusingdeeplearning AT yingchen predictinggastriccanceroutcomefromresectedlymphnodehistopathologyimagesusingdeeplearning AT yunshugao predictinggastriccanceroutcomefromresectedlymphnodehistopathologyimagesusingdeeplearning AT huiqingzhang predictinggastriccanceroutcomefromresectedlymphnodehistopathologyimagesusingdeeplearning AT zehuiguan predictinggastriccanceroutcomefromresectedlymphnodehistopathologyimagesusingdeeplearning AT zhoudong predictinggastriccanceroutcomefromresectedlymphnodehistopathologyimagesusingdeeplearning AT yuxuanzheng predictinggastriccanceroutcomefromresectedlymphnodehistopathologyimagesusingdeeplearning AT jiaruijiang predictinggastriccanceroutcomefromresectedlymphnodehistopathologyimagesusingdeeplearning AT haoqingyang predictinggastriccanceroutcomefromresectedlymphnodehistopathologyimagesusingdeeplearning AT limingwang predictinggastriccanceroutcomefromresectedlymphnodehistopathologyimagesusingdeeplearning AT xianminghuang predictinggastriccanceroutcomefromresectedlymphnodehistopathologyimagesusingdeeplearning AT lirongai predictinggastriccanceroutcomefromresectedlymphnodehistopathologyimagesusingdeeplearning AT wenlongyu predictinggastriccanceroutcomefromresectedlymphnodehistopathologyimagesusingdeeplearning AT hongweili predictinggastriccanceroutcomefromresectedlymphnodehistopathologyimagesusingdeeplearning AT changshengdong predictinggastriccanceroutcomefromresectedlymphnodehistopathologyimagesusingdeeplearning AT zhouzhou predictinggastriccanceroutcomefromresectedlymphnodehistopathologyimagesusingdeeplearning AT xiyangliu predictinggastriccanceroutcomefromresectedlymphnodehistopathologyimagesusingdeeplearning AT guanzhenyu predictinggastriccanceroutcomefromresectedlymphnodehistopathologyimagesusingdeeplearning |
_version_ |
1718392902270320640 |