Numerical study for bio-convection flow of tangent hyperbolic nanofluid over a Riga plate with activation energy

A mathematical model for the two-dimensional flow of tangent hyperbolic nanofluid over a Riga plate in the existence of gyrotactic microorganisms is discussed. For velocity, temperature, and concentration, Wu's velocity slip, thermal convection, and zero nanoparticle flux conditions are imposed...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hassan Waqas, Anosha Kafait, Taseer Muhammad, Umar Farooq
Formato: article
Lenguaje:EN
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://doaj.org/article/21d3803e7bf14b0c91a22303fd60dcb8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:A mathematical model for the two-dimensional flow of tangent hyperbolic nanofluid over a Riga plate in the existence of gyrotactic microorganisms is discussed. For velocity, temperature, and concentration, Wu's velocity slip, thermal convection, and zero nanoparticle flux conditions are imposed. Nanofluids gained tremendous notability due to their wide spread industrial, technological, and chemical applications. A set of pertinent transformations has been suggested to transform the governing non-linear partial differential equations into a system of non-linear ordinary differential equations (ODEs). The methodology involves solving the dimensionless equations using the bvp4c technique for computing the numerical solution. Additionally, the numerical results are constructed for these obtained equations by using the bvp4c tool in MATLAB. The effects of numerous prominent parameters on concentration, velocity, temperature, and motile microorganism profiles are executed graphically. From the obtained results it is noted that the velocity of the tangent hyperbolic fluid is boosted up by growing the variations of mixed convection parameters. The temperature of nanofluid behavior is reduced for a larger Prandtl number. Concentration of nano particles is enhanced by growing activation energy parameters. Microorganisms profile is improved with first-order velocity slip parameter while decaying for bio-convection Lewis number.