Behavioral gain following isolation of attention
Abstract Stable sensory perception is achieved through balanced excitatory-inhibitory interactions of lateralized sensory processing. In real world experience, sensory processing is rarely equal across lateralized processing regions, resulting in continuous rebalancing. Using lateralized attention a...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/21e9895092954dcdbdc77c93d1bd61b1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Stable sensory perception is achieved through balanced excitatory-inhibitory interactions of lateralized sensory processing. In real world experience, sensory processing is rarely equal across lateralized processing regions, resulting in continuous rebalancing. Using lateralized attention as a case study, we predicted rebalancing lateralized processing following prolonged spatial attention imbalance could cause a gain in attention in the opposite direction. In neurotypical human adults, we isolated covert attention to one visual field with a 30-min attention-demanding task and found an increase in attention in the opposite visual field after manipulation. We suggest a gain in lateralized attention in the previously unattended visual field is due to an overshoot through attention rebalancing. The offline post-manipulation effect is suggestive of long-term potentiation affecting behavior. Our finding of visual field specific attention increase could be critical for the development of clinical rehabilitation for patients with a unilateral lesion and lateralized attention deficits. This proof-of-concept study initiates the examination of overshoot following the release of imbalance in other lateralized control and sensory domains, important in our basic understanding of lateralized processing. |
---|