Unsupervised machine learning reveals key immune cell subsets in COVID-19, rhinovirus infection, and cancer therapy
For an emerging disease like COVID-19, systems immunology tools may quickly identify and quantitatively characterize cells associated with disease progression or clinical response. With repeated sampling, immune monitoring creates a real-time portrait of the cells reacting to a novel virus before di...
Guardado en:
Autores principales: | Sierra M Barone, Alberta GA Paul, Lyndsey M Muehling, Joanne A Lannigan, William W Kwok, Ronald B Turner, Judith A Woodfolk, Jonathan M Irish |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
eLife Sciences Publications Ltd
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/21ef1bb6d59e41a698679d22b7e99387 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Mechanism of Rhinovirus Immunity and Asthma
por: Zuqin Yang, et al.
Publicado: (2021) -
Corrigendum: Mechanism of Rhinovirus Immunity and Asthma
por: Zuqin Yang, et al.
Publicado: (2021) -
Effect of Bifidobacterium animalis spp. lactis Bl-04 on Rhinovirus-Induced Colds: A Randomized, Placebo-Controlled, Single-Center, Phase II Trial in Healthy Volunteers
por: Ronald B. Turner, et al.
Publicado: (2022) -
Human rhinovirus serotypes induces different immune responses
por: Ji Heui Kim, et al.
Publicado: (2021) -
Interactions of Respiratory Viruses and the Nasal Microbiota during the First Year of Life in Healthy Infants
por: Insa Korten, et al.
Publicado: (2016)