Semantic Description of Explainable Machine Learning Workflows for Improving Trust
Explainable Machine Learning comprises methods and techniques that enable users to better understand the machine learning functioning and results. This work proposes an ontology that represents explainable machine learning experiments, allowing data scientists and developers to have a holistic view,...
Guardado en:
Autores principales: | Patricia Inoue Nakagawa, Luís Ferreira Pires, João Luiz Rebelo Moreira, Luiz Olavo Bonino da Silva Santos, Faiza Bukhsh |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/21fbc5b1d44846b3b8fe4a7daa3cd927 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Integration of Government Services using Semantic Technologies
por: Hreño,Ján, et al.
Publicado: (2011) -
Achieving interoperability in e-government services with two modes of semantic bridging: SRS and SWRL
por: Muthaiyah,Saravanan, et al.
Publicado: (2008) -
Formal Ontologies, Linked Data, and TEI Semantics
por: Fabio Ciotti, et al.
Publicado: (2016) -
An OGC web service geospatial data semantic similarity model for improving geospatial service discovery
por: Miao Lizhi, et al.
Publicado: (2021) -
Automatic Ontology-Based Model Evolution for Learning Changes in Dynamic Environments
por: Roua Jabla, et al.
Publicado: (2021)