Semantic Description of Explainable Machine Learning Workflows for Improving Trust
Explainable Machine Learning comprises methods and techniques that enable users to better understand the machine learning functioning and results. This work proposes an ontology that represents explainable machine learning experiments, allowing data scientists and developers to have a holistic view,...
Enregistré dans:
Auteurs principaux: | Patricia Inoue Nakagawa, Luís Ferreira Pires, João Luiz Rebelo Moreira, Luiz Olavo Bonino da Silva Santos, Faiza Bukhsh |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/21fbc5b1d44846b3b8fe4a7daa3cd927 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Integration of Government Services using Semantic Technologies
par: Hreño,Ján, et autres
Publié: (2011) -
Achieving interoperability in e-government services with two modes of semantic bridging: SRS and SWRL
par: Muthaiyah,Saravanan, et autres
Publié: (2008) -
Formal Ontologies, Linked Data, and TEI Semantics
par: Fabio Ciotti, et autres
Publié: (2016) -
An OGC web service geospatial data semantic similarity model for improving geospatial service discovery
par: Miao Lizhi, et autres
Publié: (2021) -
Automatic Ontology-Based Model Evolution for Learning Changes in Dynamic Environments
par: Roua Jabla, et autres
Publié: (2021)