Adversarial Attack for SAR Target Recognition Based on UNet-Generative Adversarial Network
Some recent articles have revealed that synthetic aperture radar automatic target recognition (SAR-ATR) models based on deep learning are vulnerable to the attacks of adversarial examples and cause security problems. The adversarial attack can make a deep convolutional neural network (CNN)-based SAR...
Guardado en:
Autores principales: | Chuan Du, Lei Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/220f1be6a20243fb87864a46f691a522 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Advances in Adversarial Attacks and Defenses in Computer Vision: A Survey
por: Naveed Akhtar, et al.
Publicado: (2021) -
SAR Target Detection Based on Domain Adaptive Faster R-CNN with Small Training Data Size
por: Yuchen Guo, et al.
Publicado: (2021) -
Search-and-Attack: Temporally Sparse Adversarial Perturbations on Videos
por: Hwan Heo, et al.
Publicado: (2021) -
Hyperspectral Target Detection with an Auxiliary Generative Adversarial Network
por: Yanlong Gao, et al.
Publicado: (2021) -
Adversarial attacks on deep learning models in smart grids
por: Jingbo Hao, et al.
Publicado: (2022)