Identifying models of dielectric breakdown strength from high-throughput data via genetic programming
Abstract The identification of models capable of rapidly predicting material properties enables rapid screening of large numbers of materials and facilitates the design of new materials. One of the leading challenges for computational researchers is determining the best ways to analyze large materia...
Guardado en:
Autores principales: | Fenglin Yuan, Tim Mueller |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/22132188e8d84c629304643fd524eb34 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Enhanced dielectric properties and breakdown strength of polymer/carbon nanotube composites by coating an SrTiO3 layer
por: Han Ruolin, et al.
Publicado: (2021) -
Phase-field modeling and machine learning of electric-thermal-mechanical breakdown of polymer-based dielectrics
por: Zhong-Hui Shen, et al.
Publicado: (2019) -
A Bayesian framework to identify methylcytosines from high-throughput bisulfite sequencing data.
por: Qing Xie, et al.
Publicado: (2014) -
Stable fabrication of a large nanopore by controlled dielectric breakdown in a high-pH solution for the detection of various-sized molecules
por: Itaru Yanagi, et al.
Publicado: (2019) -
Optimal compressed representation of high throughput sequence data via light assembly
por: Antonio A. Ginart, et al.
Publicado: (2018)