Mechanical loading of desmosomes depends on the magnitude and orientation of external stress

Desmosomes are intercellular adhesion complexes that connect the intermediate filament cytoskeletons of neighboring cells but direct evidence for their load-bearing nature is lacking. Here the authors develop FRET-based tension sensors to measure the forces experienced by desmoplakin and infer that...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Andrew J. Price, Anna-Lena Cost, Hanna Ungewiß, Jens Waschke, Alexander R. Dunn, Carsten Grashoff
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/2215fbe56cc84a20a528fc6fe6ae67ab
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:2215fbe56cc84a20a528fc6fe6ae67ab
record_format dspace
spelling oai:doaj.org-article:2215fbe56cc84a20a528fc6fe6ae67ab2021-12-02T14:39:25ZMechanical loading of desmosomes depends on the magnitude and orientation of external stress10.1038/s41467-018-07523-02041-1723https://doaj.org/article/2215fbe56cc84a20a528fc6fe6ae67ab2018-12-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-07523-0https://doaj.org/toc/2041-1723Desmosomes are intercellular adhesion complexes that connect the intermediate filament cytoskeletons of neighboring cells but direct evidence for their load-bearing nature is lacking. Here the authors develop FRET-based tension sensors to measure the forces experienced by desmoplakin and infer that desmosomes become mechanically loaded when cells are exposed to external mechanical stresses.Andrew J. PriceAnna-Lena CostHanna UngewißJens WaschkeAlexander R. DunnCarsten GrashoffNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-11 (2018)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Andrew J. Price
Anna-Lena Cost
Hanna Ungewiß
Jens Waschke
Alexander R. Dunn
Carsten Grashoff
Mechanical loading of desmosomes depends on the magnitude and orientation of external stress
description Desmosomes are intercellular adhesion complexes that connect the intermediate filament cytoskeletons of neighboring cells but direct evidence for their load-bearing nature is lacking. Here the authors develop FRET-based tension sensors to measure the forces experienced by desmoplakin and infer that desmosomes become mechanically loaded when cells are exposed to external mechanical stresses.
format article
author Andrew J. Price
Anna-Lena Cost
Hanna Ungewiß
Jens Waschke
Alexander R. Dunn
Carsten Grashoff
author_facet Andrew J. Price
Anna-Lena Cost
Hanna Ungewiß
Jens Waschke
Alexander R. Dunn
Carsten Grashoff
author_sort Andrew J. Price
title Mechanical loading of desmosomes depends on the magnitude and orientation of external stress
title_short Mechanical loading of desmosomes depends on the magnitude and orientation of external stress
title_full Mechanical loading of desmosomes depends on the magnitude and orientation of external stress
title_fullStr Mechanical loading of desmosomes depends on the magnitude and orientation of external stress
title_full_unstemmed Mechanical loading of desmosomes depends on the magnitude and orientation of external stress
title_sort mechanical loading of desmosomes depends on the magnitude and orientation of external stress
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/2215fbe56cc84a20a528fc6fe6ae67ab
work_keys_str_mv AT andrewjprice mechanicalloadingofdesmosomesdependsonthemagnitudeandorientationofexternalstress
AT annalenacost mechanicalloadingofdesmosomesdependsonthemagnitudeandorientationofexternalstress
AT hannaungewiß mechanicalloadingofdesmosomesdependsonthemagnitudeandorientationofexternalstress
AT jenswaschke mechanicalloadingofdesmosomesdependsonthemagnitudeandorientationofexternalstress
AT alexanderrdunn mechanicalloadingofdesmosomesdependsonthemagnitudeandorientationofexternalstress
AT carstengrashoff mechanicalloadingofdesmosomesdependsonthemagnitudeandorientationofexternalstress
_version_ 1718390580350812160