Artifact reduction of coaxial needles in magnetic resonance imaging-guided abdominal interventions at 1.5 T: a phantom study

Abstract Needle artifacts pose a major limitation for MRI-guided interventions, as they impact the visually perceived needle size and needle-to-target-distance. The objective of this agar liver phantom study was to establish an experimental basis to understand and reduce needle artifact formation du...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Vanessa Franziska Schmidt, Federica Arnone, Olaf Dietrich, Max Seidensticker, Marco Armbruster, Jens Ricke, Philipp Maximilian Kazmierczak
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/2215fccfce0c4c7dbce2aadc297eb87e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Needle artifacts pose a major limitation for MRI-guided interventions, as they impact the visually perceived needle size and needle-to-target-distance. The objective of this agar liver phantom study was to establish an experimental basis to understand and reduce needle artifact formation during MRI-guided abdominal interventions. Using a vendor-specific prototype fluoroscopic T1-weighted gradient echo sequence with real-time multiplanar acquisition at 1.5 T, the influence of 6 parameters (flip angle, bandwidth, matrix, slice thickness, read-out direction, intervention angle relative to B0) on artifact formation of 4 different coaxial MR-compatible coaxial needles (Nitinol, 16G–22G) was investigated. As one parameter was modified, the others remained constant. For each individual parameter variation, 2 independent and blinded readers rated artifact diameters at 2 predefined positions (15 mm distance from the perceived needle tip and at 50% of the needle length). Differences between the experimental subgroups were assessed by Bonferroni-corrected non-parametric tests. Correlations between continuous variables were expressed by the Bravais–Pearson coefficient and interrater reliability was quantified using the intraclass classification coefficient. Needle artifact size increased gradually with increasing flip angles (p = 0.002) as well as increasing intervention angles (p < 0.001). Artifact diameters differed significantly between the chosen matrix sizes (p = 0.002) while modifying bandwidth, readout direction, and slice thickness showed no significant differences. Interrater reliability was high (intraclass correlation coefficient 0.776–0.910). To minimize needle artifacts in MRI-guided abdominal interventions while maintaining optimal visibility of the coaxial needle, we suggest medium-range flip angles and low intervention angles relative to B0.