Impact of High Inertia Particles on the Shock Layer and Heat Transfer in a Heterogeneous Supersonic Flow around a Blunt Body

One of the most important and complex effects associated with the presence of particles in the flow is the gas-dynamic interaction of particles with the shock layer. Of particular interest is the intensification of heat transfer by high inertia particles rebounding from the surface or by the product...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Andrey Sposobin, Dmitry Reviznikov
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/22276e8a10b545f398904de552663280
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:One of the most important and complex effects associated with the presence of particles in the flow is the gas-dynamic interaction of particles with the shock layer. Of particular interest is the intensification of heat transfer by high inertia particles rebounding from the surface or by the products of erosion destruction, which reach the front of the bow shock wave and violate the gas-dynamic structure of the flow. In this case, according to experimental data, the increase in heat fluxes is much greater than it could be predicted based on the combined action of the kinetic energy of particles and a high-speed flow. The problem is related to the destruction of the flow structure. In this paper, the problem is studied with numerical simulation. We show that the key role in the intensification of heat transfer is played by the formation of an impact jet flowing onto the surface. An area of increased pressure and heat flux is formed in the zone of action of the impact jet. This effect is maintained over time by the successive action of particles.