Correspondence between neuroevolution and gradient descent
Gradient-based and non-gradient-based methods for training neural networks are usually considered to be fundamentally different. The authors derive, and illustrate numerically, an analytic equivalence between the dynamics of neural network training under conditioned stochastic mutations, and under g...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2228d1b435c34f58901cee411ded17c8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Gradient-based and non-gradient-based methods for training neural networks are usually considered to be fundamentally different. The authors derive, and illustrate numerically, an analytic equivalence between the dynamics of neural network training under conditioned stochastic mutations, and under gradient descent. |
---|