Correspondence between neuroevolution and gradient descent

Gradient-based and non-gradient-based methods for training neural networks are usually considered to be fundamentally different. The authors derive, and illustrate numerically, an analytic equivalence between the dynamics of neural network training under conditioned stochastic mutations, and under g...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Stephen Whitelam, Viktor Selin, Sang-Won Park, Isaac Tamblyn
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/2228d1b435c34f58901cee411ded17c8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:2228d1b435c34f58901cee411ded17c8
record_format dspace
spelling oai:doaj.org-article:2228d1b435c34f58901cee411ded17c82021-11-08T11:07:35ZCorrespondence between neuroevolution and gradient descent10.1038/s41467-021-26568-22041-1723https://doaj.org/article/2228d1b435c34f58901cee411ded17c82021-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-26568-2https://doaj.org/toc/2041-1723Gradient-based and non-gradient-based methods for training neural networks are usually considered to be fundamentally different. The authors derive, and illustrate numerically, an analytic equivalence between the dynamics of neural network training under conditioned stochastic mutations, and under gradient descent.Stephen WhitelamViktor SelinSang-Won ParkIsaac TamblynNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-10 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Stephen Whitelam
Viktor Selin
Sang-Won Park
Isaac Tamblyn
Correspondence between neuroevolution and gradient descent
description Gradient-based and non-gradient-based methods for training neural networks are usually considered to be fundamentally different. The authors derive, and illustrate numerically, an analytic equivalence between the dynamics of neural network training under conditioned stochastic mutations, and under gradient descent.
format article
author Stephen Whitelam
Viktor Selin
Sang-Won Park
Isaac Tamblyn
author_facet Stephen Whitelam
Viktor Selin
Sang-Won Park
Isaac Tamblyn
author_sort Stephen Whitelam
title Correspondence between neuroevolution and gradient descent
title_short Correspondence between neuroevolution and gradient descent
title_full Correspondence between neuroevolution and gradient descent
title_fullStr Correspondence between neuroevolution and gradient descent
title_full_unstemmed Correspondence between neuroevolution and gradient descent
title_sort correspondence between neuroevolution and gradient descent
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/2228d1b435c34f58901cee411ded17c8
work_keys_str_mv AT stephenwhitelam correspondencebetweenneuroevolutionandgradientdescent
AT viktorselin correspondencebetweenneuroevolutionandgradientdescent
AT sangwonpark correspondencebetweenneuroevolutionandgradientdescent
AT isaactamblyn correspondencebetweenneuroevolutionandgradientdescent
_version_ 1718442312838676480