Development of deep learning algorithms for predicting blastocyst formation and quality by time-lapse monitoring

Liao et al. propose a deep learning model to predict blastocyst formation using TLM videos following the first three days of embryogenesis. The authors develop an ensemble prediction model, STEM and STEM+, which were found to exhibit 78.2% and 71.9% accuracy at predicting blastocyst formation and us...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Qiuyue Liao, Qi Zhang, Xue Feng, Haibo Huang, Haohao Xu, Baoyuan Tian, Jihao Liu, Qihui Yu, Na Guo, Qun Liu, Bo Huang, Ding Ma, Jihui Ai, Shugong Xu, Kezhen Li
Format: article
Langue:EN
Publié: Nature Portfolio 2021
Sujets:
Accès en ligne:https://doaj.org/article/22365fca6617491f82115a898e8b8c2e
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!