Swimming of peritrichous bacteria is enabled by an elastohydrodynamic instability
Abstract Peritrichously-flagellated bacteria, such as Escherichia coli, self-propel in fluids by using specialised motors to rotate multiple helical filaments. The rotation of each motor is transmitted to a short flexible segment called the hook which in turn transmits it to a flagellar filament, en...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/223a6e40a9224c349d9a2edf18f77b27 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:223a6e40a9224c349d9a2edf18f77b27 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:223a6e40a9224c349d9a2edf18f77b272021-12-02T15:07:47ZSwimming of peritrichous bacteria is enabled by an elastohydrodynamic instability10.1038/s41598-018-28319-82045-2322https://doaj.org/article/223a6e40a9224c349d9a2edf18f77b272018-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-018-28319-8https://doaj.org/toc/2045-2322Abstract Peritrichously-flagellated bacteria, such as Escherichia coli, self-propel in fluids by using specialised motors to rotate multiple helical filaments. The rotation of each motor is transmitted to a short flexible segment called the hook which in turn transmits it to a flagellar filament, enabling swimming of the whole cell. Since multiple motors are spatially distributed on the body of the organism, one would expect the propulsive forces from the filaments to push against each other leading to negligible swimming. We use a combination of computations and theory to show that the swimming of peritrichous bacteria is enabled by an elastohydrodynamic bending instability occurring for hooks more flexible than a critical threshold. Using past measurements of hook bending stiffness, we demonstrate how real bacteria are safely on the side of the instability that promotes systematic swimming.Emily E. RileyDebasish DasEric LaugaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 8, Iss 1, Pp 1-7 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Emily E. Riley Debasish Das Eric Lauga Swimming of peritrichous bacteria is enabled by an elastohydrodynamic instability |
description |
Abstract Peritrichously-flagellated bacteria, such as Escherichia coli, self-propel in fluids by using specialised motors to rotate multiple helical filaments. The rotation of each motor is transmitted to a short flexible segment called the hook which in turn transmits it to a flagellar filament, enabling swimming of the whole cell. Since multiple motors are spatially distributed on the body of the organism, one would expect the propulsive forces from the filaments to push against each other leading to negligible swimming. We use a combination of computations and theory to show that the swimming of peritrichous bacteria is enabled by an elastohydrodynamic bending instability occurring for hooks more flexible than a critical threshold. Using past measurements of hook bending stiffness, we demonstrate how real bacteria are safely on the side of the instability that promotes systematic swimming. |
format |
article |
author |
Emily E. Riley Debasish Das Eric Lauga |
author_facet |
Emily E. Riley Debasish Das Eric Lauga |
author_sort |
Emily E. Riley |
title |
Swimming of peritrichous bacteria is enabled by an elastohydrodynamic instability |
title_short |
Swimming of peritrichous bacteria is enabled by an elastohydrodynamic instability |
title_full |
Swimming of peritrichous bacteria is enabled by an elastohydrodynamic instability |
title_fullStr |
Swimming of peritrichous bacteria is enabled by an elastohydrodynamic instability |
title_full_unstemmed |
Swimming of peritrichous bacteria is enabled by an elastohydrodynamic instability |
title_sort |
swimming of peritrichous bacteria is enabled by an elastohydrodynamic instability |
publisher |
Nature Portfolio |
publishDate |
2018 |
url |
https://doaj.org/article/223a6e40a9224c349d9a2edf18f77b27 |
work_keys_str_mv |
AT emilyeriley swimmingofperitrichousbacteriaisenabledbyanelastohydrodynamicinstability AT debasishdas swimmingofperitrichousbacteriaisenabledbyanelastohydrodynamicinstability AT ericlauga swimmingofperitrichousbacteriaisenabledbyanelastohydrodynamicinstability |
_version_ |
1718388371700580352 |