Highly Accurate Short-Term Gas Consumption and Elapsed Time Forecasting Using Multi-Channel Deep Neural Network
Accurate gas consumption and elapsed time forecasting can help decision-makers detect anomaly gas usage and notify users to recognize the facility fault in real-time. However, it is challenging due to its variable and complex factors. This paper proposed a novel deep model, named multi-channel DNN (...
Guardado en:
Autores principales: | Yeonjee Choi, Xiaorui Shao, Hyun Suk Hwang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2245f4490d44432493268d92ba287031 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Influence of smart meters on the accuracy of methods for forecasting natural gas consumption
por: Ivan Smajla, et al.
Publicado: (2021) -
StackDA: A Stacked Dual Attention Neural Network for Multivariate Time-Series Forecasting
por: Jungsoo Hong, et al.
Publicado: (2021) -
Forecasting vehicle accelerations using LSTM
por: Takeyuki ONO, et al.
Publicado: (2021) -
A Temporal Neural Network Model for Probabilistic Multi-Period Forecasting of Distributed Energy Resources
por: Markus Loschenbrand
Publicado: (2021) -
Enhanced Deep Belief Network Based on Ensemble Learning and Tree-Structured of Parzen Estimators: An Optimal Photovoltaic Power Forecasting Method
por: Mohamed Massaoudi, et al.
Publicado: (2021)