Explaining predictive models using Shapley values and non-parametric vine copulas
In this paper the goal is to explain predictions from complex machine learning models. One method that has become very popular during the last few years is Shapley values. The original development of Shapley values for prediction explanation relied on the assumption that the features being described...
Guardado en:
Autores principales: | Aas Kjersti, Nagler Thomas, Jullum Martin, Løland Anders |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/225427ea4f4d4ef4bd46be33a51c8970 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Generating unfavourable VaR scenarios under Solvency II with patchwork copulas
por: Pfeifer Dietmar, et al.
Publicado: (2021) -
New results on perturbation-based copulas
por: Saminger-Platz Susanne, et al.
Publicado: (2021) -
On convergence of associative copulas and related results
por: Kasper Thimo M., et al.
Publicado: (2021) -
Multivariate radial symmetry of copula functions: finite sample comparison in the i.i.d case
por: Billio Monica, et al.
Publicado: (2021) -
On a general class of gamma based copulas
por: Arnold Barry C., et al.
Publicado: (2021)