Towards perturbation prediction of biological networks using deep learning
Abstract The mapping of the physical interactions between biochemical entities enables quantitative analysis of dynamic biological living systems. While developing a precise dynamical model on biological entity interaction is still challenging due to the limitation of kinetic parameter detection of...
Guardado en:
Autores principales: | Diya Li, Jianxi Gao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2276c93b000442c8a1ca26ef5fa7ff00 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Earthquakes and very deep groundwater perturbation mutually induced
por: Dugin Kaown, et al.
Publicado: (2021) -
Integrating ensemble systems biology feature selection and bimodal deep neural network for breast cancer prognosis prediction
por: Li-Hsin Cheng, et al.
Publicado: (2021) -
Predicting the clinical management of skin lesions using deep learning
por: Kumar Abhishek, et al.
Publicado: (2021) -
Deep Learning using Convolutional LSTM estimates Biological Age from Physical Activity
por: Syed Ashiqur Rahman, et al.
Publicado: (2019) -
Reconstruction of cellular signal transduction networks using perturbation assays and linear programming.
por: Bettina Knapp, et al.
Publicado: (2013)