Deep Graph Convolutional Networks for Accurate Automatic Road Network Selection
The selection of road networks is very important for cartographic generalization. Traditional artificial intelligence methods have improved selection efficiency but cannot fully extract the spatial features of road networks. However, current selection methods, which are based on the theory of graphs...
Guardado en:
Autores principales: | Jing Zheng, Ziren Gao, Jingsong Ma, Jie Shen, Kang Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/228e322f366f4c72b9d81525a0efd174 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Spectral-Spatial Offset Graph Convolutional Networks for Hyperspectral Image Classification
por: Minghua Zhang, et al.
Publicado: (2021) -
Automatic differentiation of thyroid scintigram by deep convolutional neural network: a dual center study
por: Pei Yang, et al.
Publicado: (2021) -
CRPGCN: predicting circRNA-disease associations using graph convolutional network based on heterogeneous network
por: Zhihao Ma, et al.
Publicado: (2021) -
Automatic Electroencephalogram Artifact Removal Using Deep Convolutional Neural Networks
por: Fabio Lopes, et al.
Publicado: (2021) -
Drug Therapeutic-Use Class Prediction and Repurposing Using Graph Convolutional Networks
por: Mapopa Chipofya, et al.
Publicado: (2021)