Comparison of machine-learning methodologies for accurate diagnosis of sepsis using microarray gene expression data.
We investigate the feasibility of molecular-level sample classification of sepsis using microarray gene expression data merged by in silico meta-analysis. Publicly available data series were extracted from NCBI Gene Expression Omnibus and EMBL-EBI ArrayExpress to create a comprehensive meta-analysis...
Enregistré dans:
Auteurs principaux: | Dominik Schaack, Markus A Weigand, Florian Uhle |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/229cd1e057ca4c62ac611b4e7b29f9ea |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Analyzing illumina gene expression microarray data from different tissues: methodological aspects of data analysis in the metaxpress consortium.
par: Claudia Schurmann, et autres
Publié: (2012) -
The Machine Learned Stethoscope Provides Accurate Operator Independent Diagnosis of Chest Disease
par: Kotb MA, et autres
Publié: (2020) -
Construction, visualisation, and clustering of transcription networks from microarray expression data.
par: Tom C Freeman, et autres
Publié: (2007) -
Mass spectrometry and machine learning for the accurate diagnosis of benzylpenicillin and multidrug resistance of Staphylococcus aureus in bovine mastitis.
par: Necati Esener, et autres
Publié: (2021) -
Optimization based tumor classification from microarray gene expression data.
par: Onur Dagliyan, et autres
Publié: (2011)